Deleterious effects of phosphatidylethanolamine plasmalogen oxidation via singlet molecular oxygen

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Faria, Rodrigo Lucas de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/46/46131/tde-11122023-191536/
Resumo: Plasmalogens are phospholipids present in all human tissues. They represent about 20% of all phospholipids. They are characterized by the presence of a vinyl ether-type bond in the aliphatic chain at the sn-1 position of glycerol, while at the sn-2 position of glycerol it is esterified, in most cases, to polyunsaturated fatty acids (PUFAs). Although studies have demonstrated the protective effects of plasmalogens in cellular models subjected to oxidative stress, the proposed mechanisms for their antioxidant effect are controversial. For example, the reaction of the vinyl ether group with reactive oxygen species (ROS) generates reactive products such as dioxetanes and aldehydes, which can propagate oxidative damage. Electron-rich groups, such as the vinyl ether of plasmalogens, form dioxetane with singlet oxygen by a (2+2) cycle addition reaction. Dioxetans are generally unstable and decompose rapidly by thermolysis, generating excited carbonyl. This excited species can decay to the ground state by emitting visible light, but it can also transfer energy to molecular oxygen in the ground state (O2(3&#916g-)), thus producing singlet molecular oxygen (O2(1Δg))11. This process of O2(1&#916g) formation is called photochemistry in the dark. Furthermore, lipid hydroperoxides in the presence of oxidizing ions, such as iron 2+, can also generate O2(1&#916g) by Russell mechanism. Therefore, plasmalogen oxidation via O2(1&#916g) can propagate oxidation reactions by photochemistry in the dark and Russel mechanism. To test this hypothesis, the present study aims to: a) perform a qualitative and quantitative oxylipidomics analysis (lipidomics of non-oxidized and oxidized lipids) focusing on lipid remodeling induced by oxidation via singlet oxygen generated by photooxidation in HaCat keratinocytes, b) characterize the main oxidized products (dioxetanes, aldehydes, lysophospholipids, etc.) derived from the reaction of plasmalogen with singlet oxygen, c) study the mechanisms of plasmalogen oxidation and the effects of plasmalogen oxidation on models of membranes and cells, d) Analysis of free fatty acids by UPLC-Fluorescence, as there is great interest in knowing the composition of fatty acids in biological samples, as changes in these lipids are associated with pathological conditions, in addition to being precursors of signals such as prostaglandin.
id USP_fbfb11fdf42bf4625b14a9cfe21cd04c
oai_identifier_str oai:teses.usp.br:tde-11122023-191536
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Deleterious effects of phosphatidylethanolamine plasmalogen oxidation via singlet molecular oxygenEfeitos deletérios da oxidação de plasmalogênios de fosfatidiletanolamina via oxigênio molecularAnálise de aldeídos lipídicosAnalysis of lipid aldehydesEspectrometria de massasLipid oxidationMass spectrometryMecanismos de geração de oxigênio molecular singleteOxidação lipídicaPlasmalogêniosplasmalogensSinglet molecular oxygen generation mechanismsPlasmalogens are phospholipids present in all human tissues. They represent about 20% of all phospholipids. They are characterized by the presence of a vinyl ether-type bond in the aliphatic chain at the sn-1 position of glycerol, while at the sn-2 position of glycerol it is esterified, in most cases, to polyunsaturated fatty acids (PUFAs). Although studies have demonstrated the protective effects of plasmalogens in cellular models subjected to oxidative stress, the proposed mechanisms for their antioxidant effect are controversial. For example, the reaction of the vinyl ether group with reactive oxygen species (ROS) generates reactive products such as dioxetanes and aldehydes, which can propagate oxidative damage. Electron-rich groups, such as the vinyl ether of plasmalogens, form dioxetane with singlet oxygen by a (2+2) cycle addition reaction. Dioxetans are generally unstable and decompose rapidly by thermolysis, generating excited carbonyl. This excited species can decay to the ground state by emitting visible light, but it can also transfer energy to molecular oxygen in the ground state (O2(3&#916g-)), thus producing singlet molecular oxygen (O2(1Δg))11. This process of O2(1&#916g) formation is called photochemistry in the dark. Furthermore, lipid hydroperoxides in the presence of oxidizing ions, such as iron 2+, can also generate O2(1&#916g) by Russell mechanism. Therefore, plasmalogen oxidation via O2(1&#916g) can propagate oxidation reactions by photochemistry in the dark and Russel mechanism. To test this hypothesis, the present study aims to: a) perform a qualitative and quantitative oxylipidomics analysis (lipidomics of non-oxidized and oxidized lipids) focusing on lipid remodeling induced by oxidation via singlet oxygen generated by photooxidation in HaCat keratinocytes, b) characterize the main oxidized products (dioxetanes, aldehydes, lysophospholipids, etc.) derived from the reaction of plasmalogen with singlet oxygen, c) study the mechanisms of plasmalogen oxidation and the effects of plasmalogen oxidation on models of membranes and cells, d) Analysis of free fatty acids by UPLC-Fluorescence, as there is great interest in knowing the composition of fatty acids in biological samples, as changes in these lipids are associated with pathological conditions, in addition to being precursors of signals such as prostaglandin.Plasmalogênios são fosfolipídeos presentes em todos os tecidos humanos. Representam cerca de 20% de todos os fosfolipídeos. Caracterizam-se pela presença de uma ligação do tipo éter vinílico na cadeia alifática da posição sn-1 do glicerol, enquanto na posição sn-2 do glicerol é esterificado, na grande maioria das vezes, à ácidos graxos poliinsaturados (PUFAs). Embora estudos tenham demonstrados os efeitos protetores de plasmalogênios em modelos celulares submetidos à estresse oxidativo, os mecanismos propostos para seu efeito antioxidante são controversos. Por exemplo, a reação do grupo vinil éter com espécies reativas de oxigênios (ROS) gera produtos reativos como dioxetanos e aldeídos, os quais podem propagar os danos oxidativos. Grupos ricos em elétrons, como o vinil éter de plasmalogênios, formam dioxetano com oxigênio singlete por reação de (2+2) ciclo adição. Dioxetanos são geralmente instáveis e se decompõe rapidamente por termólise, gerando carbonila excitada. Esta espécie excitada pode decair para o estado fundamental emitindo luz visível, mas também pode transferir energia para o oxigênio molecular no estado fundamental (O2(3Δg-)), desta forma, produzindo oxigênio molecular singlete (O2(1Δg))11. Este processo de formação de O2(1Δg) é chamado de fotoquímica no escuro. Além disso, hidroperóxidos lipídicos na presença de íons oxidantes, como ferro 2+, também podem gerar O2(1Δg) por mecanismo de Russel. Portanto, a oxidação de plasmalogênio via O2(1Δg) pode propagar reações de oxidação por fotoquímica no escuro e mecanismo de Russel. Para testar esta hipótese, o presente estudo tem como metas: a) realizar análise oxi-lipidômica qualitativa e quantitativa (lipidômica de lipídeos não-oxidados e oxidados) com foco no remodelamento lipídico induzido por oxidação via oxigênio singlete gerado por fotooxidação em queratinócitos HaCat, b) caracterizar os principais produtos oxidados (dioxetanos, aldeídos, lisofosfolipídeos, etc.) derivados da reação do plasmalogênio com oxigênio singlete, c) estudar os mecanismos de oxidação de plasmalogênio e os efeitos da oxidação de plasmalogênios em modelos de membranas e em células, d) Análise de ácidos graxos livres por UPLC-Fluorescência, pois há um grande interesse em conhecer a composição de ácidos graxo em amostras biológicas, pois alterações nesses lipídeos estão associadas a condições patológicas, além de serem precursores de sinalizadores como prostaglandina.Biblioteca Digitais de Teses e Dissertações da USPMiyamoto, SayuriFaria, Rodrigo Lucas de2023-07-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/46/46131/tde-11122023-191536/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-12-21T19:33:03Zoai:teses.usp.br:tde-11122023-191536Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-12-21T19:33:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Deleterious effects of phosphatidylethanolamine plasmalogen oxidation via singlet molecular oxygen
Efeitos deletérios da oxidação de plasmalogênios de fosfatidiletanolamina via oxigênio molecular
title Deleterious effects of phosphatidylethanolamine plasmalogen oxidation via singlet molecular oxygen
spellingShingle Deleterious effects of phosphatidylethanolamine plasmalogen oxidation via singlet molecular oxygen
Faria, Rodrigo Lucas de
Análise de aldeídos lipídicos
Analysis of lipid aldehydes
Espectrometria de massas
Lipid oxidation
Mass spectrometry
Mecanismos de geração de oxigênio molecular singlete
Oxidação lipídica
Plasmalogênios
plasmalogens
Singlet molecular oxygen generation mechanisms
title_short Deleterious effects of phosphatidylethanolamine plasmalogen oxidation via singlet molecular oxygen
title_full Deleterious effects of phosphatidylethanolamine plasmalogen oxidation via singlet molecular oxygen
title_fullStr Deleterious effects of phosphatidylethanolamine plasmalogen oxidation via singlet molecular oxygen
title_full_unstemmed Deleterious effects of phosphatidylethanolamine plasmalogen oxidation via singlet molecular oxygen
title_sort Deleterious effects of phosphatidylethanolamine plasmalogen oxidation via singlet molecular oxygen
author Faria, Rodrigo Lucas de
author_facet Faria, Rodrigo Lucas de
author_role author
dc.contributor.none.fl_str_mv Miyamoto, Sayuri
dc.contributor.author.fl_str_mv Faria, Rodrigo Lucas de
dc.subject.por.fl_str_mv Análise de aldeídos lipídicos
Analysis of lipid aldehydes
Espectrometria de massas
Lipid oxidation
Mass spectrometry
Mecanismos de geração de oxigênio molecular singlete
Oxidação lipídica
Plasmalogênios
plasmalogens
Singlet molecular oxygen generation mechanisms
topic Análise de aldeídos lipídicos
Analysis of lipid aldehydes
Espectrometria de massas
Lipid oxidation
Mass spectrometry
Mecanismos de geração de oxigênio molecular singlete
Oxidação lipídica
Plasmalogênios
plasmalogens
Singlet molecular oxygen generation mechanisms
description Plasmalogens are phospholipids present in all human tissues. They represent about 20% of all phospholipids. They are characterized by the presence of a vinyl ether-type bond in the aliphatic chain at the sn-1 position of glycerol, while at the sn-2 position of glycerol it is esterified, in most cases, to polyunsaturated fatty acids (PUFAs). Although studies have demonstrated the protective effects of plasmalogens in cellular models subjected to oxidative stress, the proposed mechanisms for their antioxidant effect are controversial. For example, the reaction of the vinyl ether group with reactive oxygen species (ROS) generates reactive products such as dioxetanes and aldehydes, which can propagate oxidative damage. Electron-rich groups, such as the vinyl ether of plasmalogens, form dioxetane with singlet oxygen by a (2+2) cycle addition reaction. Dioxetans are generally unstable and decompose rapidly by thermolysis, generating excited carbonyl. This excited species can decay to the ground state by emitting visible light, but it can also transfer energy to molecular oxygen in the ground state (O2(3&#916g-)), thus producing singlet molecular oxygen (O2(1Δg))11. This process of O2(1&#916g) formation is called photochemistry in the dark. Furthermore, lipid hydroperoxides in the presence of oxidizing ions, such as iron 2+, can also generate O2(1&#916g) by Russell mechanism. Therefore, plasmalogen oxidation via O2(1&#916g) can propagate oxidation reactions by photochemistry in the dark and Russel mechanism. To test this hypothesis, the present study aims to: a) perform a qualitative and quantitative oxylipidomics analysis (lipidomics of non-oxidized and oxidized lipids) focusing on lipid remodeling induced by oxidation via singlet oxygen generated by photooxidation in HaCat keratinocytes, b) characterize the main oxidized products (dioxetanes, aldehydes, lysophospholipids, etc.) derived from the reaction of plasmalogen with singlet oxygen, c) study the mechanisms of plasmalogen oxidation and the effects of plasmalogen oxidation on models of membranes and cells, d) Analysis of free fatty acids by UPLC-Fluorescence, as there is great interest in knowing the composition of fatty acids in biological samples, as changes in these lipids are associated with pathological conditions, in addition to being precursors of signals such as prostaglandin.
publishDate 2023
dc.date.none.fl_str_mv 2023-07-10
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/46/46131/tde-11122023-191536/
url https://www.teses.usp.br/teses/disponiveis/46/46131/tde-11122023-191536/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258047396708352