Test particles and fields in axially symmetric relevant settings

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Capobianco, Rogério Augusto
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/76/76134/tde-09122024-092924/
Resumo: The effects of a gravitational field can be studied using test particles and fields. An exemplary analysis includes a complete description of the equations of motion. This thesis assembles the research results summarized in four papers and focuses on describing the dynamics of test particles and test fields in stationary and axially symmetric space-time. The solutions considered here are either found analytically or numerically for the vacuum and electro-vacuum Einsteins field equations. Firstly, we study a scalar-tensor model in which the scalar field is non-minimally coupled with (a) the electromagnetic field and (b) the curvature of the space-time. We study the spontaneous scalarization of an extended, self-gravitating system that is static, cylindrically symmetric and possesses electromagnetic fields. We demonstrate that a massive, real-valued scalar field condensates on this Melvin magnetic universe for both considered scenarios. We found that, for small values of the scalar field, a node solution exists; it can be expanded in terms of the Laguerre polynomials around the axes and Bessel functions asymptotically. We performed a full numerical integration of equations of motion and verified that solutions do possess nodes. In addition, solutions exist for a finite range of coupling constants. interestingly, we verified that for case (a), the interval of existence of solutions is mutually exclusive, and hence, different node-solutions cannot be interpreted as excited states of a fundamental solution; this does not happen for the (b) case; suggesting that these two couplings are different in nature. Secondly, we consider the geodesic motion in the swirling universe. We demonstrate that the geodesic equations can be decoupled using the Hamilton-Jacobi formalism, where a fourth constant of motion can be found. The set of uncoupled differential equations can be analytically integrated in terms of elementary and elliptic functions. Additionally, a full characterization of the possible physical orbits is provided. A typical orbit is then bounded in the radial direction and escapes to infinity in the z– direction; the only exception is the case of a particle with no angular momentum. Furthermore, we also consider a spacetime describing a Schwarzschild black hole immersed in a swirling universe; in this case, the geodesic equation cannot be decoupled, and hence, the system must be numerically integrated; preliminary results suggest the emergence of chaotic motion for either massive or massless particles. We proceed by considering the motion of charged particles in the electromagnetic swirling universe (EMS). The EMS space-time is a novel solution recently obtained; as in the above case, it is stationary and axially symmetric. It can be understood as the immersion of a Melvin space-time into a swirling universe, or vice-versa. Since this space-time possesses electromagnetic fields, we consider the motion of charged particles, both electric and magnetic charges, for a complete description. Remarkably, the equations of motion can also be decoupled within the Hamilton-Jacobi formalism; the mathematical structure of the decoupled equations of motion resembles much the geodesic motion in the swirling universe. Therefore, the equations can be analytically integrated in terms of elementary and elliptic functions. A typical orbit is qualitatively similar to an orbit in the swirling universe, being bounded in the radial direction and escaping to infinity in the z– direction. However, there is a special case in which the electromagnetic interaction can counterbalance the dragging effect, and therefore, orbits for particles with non-vanishing angular momentum can be planar. Finally, we consider the case of the geometrically thick disks around a Kerr black hole immersed in a swirling universe. Due to the spin-spin interaction between the black hole and the swirling universe background, a conical singularity appears on the symmetry axis, highly affecting the geometrical properties as well as the disk solutions, which are driven away from the equatorial plane even for small variations of the swirling parameter. In order to provide an exemplary description, we consider the Kerr parameter to be within a range that includes a slow, medium, and rapidly rotating black hole; the same is done for the swirling parameter. Additionally, we consider both the prograde and the retrograde motion, which are taken are respect to the black hole rotation. We find that disk solutions exist for either case. Moreover, this spin-spin interaction acts as a stabilizing effect for prograde motion and a destabilizing effect for retrograde motion; this increases with the black hole rotation. In addition, the presence of the background rotation makes the emergence of static orbits appear; however, these are all unstable, and therefore, disk solutions with static surfaces do not exist. The breaking of symmetry regarding the equatorial plane causes vertical distribution of the circular orbits and thick torus solutions. The possible disk solutions are classified in terms of the cusps and the value of the effective potential on the cusps. All possible disk solutions can be classified into two different groups.
id USP_fc6f2c2dc970b79051b77b32c83c60e8
oai_identifier_str oai:teses.usp.br:tde-09122024-092924
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Test particles and fields in axially symmetric relevant settingsPartículas e campos teste em espaço-tempo com simetria axialAccretion disksBlack holesBuracos negrosDiscos de acreçãoGeodésicasGeodesicsGravidadeGravityScalarização espontâneaSpontaneous scalarizationThe effects of a gravitational field can be studied using test particles and fields. An exemplary analysis includes a complete description of the equations of motion. This thesis assembles the research results summarized in four papers and focuses on describing the dynamics of test particles and test fields in stationary and axially symmetric space-time. The solutions considered here are either found analytically or numerically for the vacuum and electro-vacuum Einsteins field equations. Firstly, we study a scalar-tensor model in which the scalar field is non-minimally coupled with (a) the electromagnetic field and (b) the curvature of the space-time. We study the spontaneous scalarization of an extended, self-gravitating system that is static, cylindrically symmetric and possesses electromagnetic fields. We demonstrate that a massive, real-valued scalar field condensates on this Melvin magnetic universe for both considered scenarios. We found that, for small values of the scalar field, a node solution exists; it can be expanded in terms of the Laguerre polynomials around the axes and Bessel functions asymptotically. We performed a full numerical integration of equations of motion and verified that solutions do possess nodes. In addition, solutions exist for a finite range of coupling constants. interestingly, we verified that for case (a), the interval of existence of solutions is mutually exclusive, and hence, different node-solutions cannot be interpreted as excited states of a fundamental solution; this does not happen for the (b) case; suggesting that these two couplings are different in nature. Secondly, we consider the geodesic motion in the swirling universe. We demonstrate that the geodesic equations can be decoupled using the Hamilton-Jacobi formalism, where a fourth constant of motion can be found. The set of uncoupled differential equations can be analytically integrated in terms of elementary and elliptic functions. Additionally, a full characterization of the possible physical orbits is provided. A typical orbit is then bounded in the radial direction and escapes to infinity in the z– direction; the only exception is the case of a particle with no angular momentum. Furthermore, we also consider a spacetime describing a Schwarzschild black hole immersed in a swirling universe; in this case, the geodesic equation cannot be decoupled, and hence, the system must be numerically integrated; preliminary results suggest the emergence of chaotic motion for either massive or massless particles. We proceed by considering the motion of charged particles in the electromagnetic swirling universe (EMS). The EMS space-time is a novel solution recently obtained; as in the above case, it is stationary and axially symmetric. It can be understood as the immersion of a Melvin space-time into a swirling universe, or vice-versa. Since this space-time possesses electromagnetic fields, we consider the motion of charged particles, both electric and magnetic charges, for a complete description. Remarkably, the equations of motion can also be decoupled within the Hamilton-Jacobi formalism; the mathematical structure of the decoupled equations of motion resembles much the geodesic motion in the swirling universe. Therefore, the equations can be analytically integrated in terms of elementary and elliptic functions. A typical orbit is qualitatively similar to an orbit in the swirling universe, being bounded in the radial direction and escaping to infinity in the z– direction. However, there is a special case in which the electromagnetic interaction can counterbalance the dragging effect, and therefore, orbits for particles with non-vanishing angular momentum can be planar. Finally, we consider the case of the geometrically thick disks around a Kerr black hole immersed in a swirling universe. Due to the spin-spin interaction between the black hole and the swirling universe background, a conical singularity appears on the symmetry axis, highly affecting the geometrical properties as well as the disk solutions, which are driven away from the equatorial plane even for small variations of the swirling parameter. In order to provide an exemplary description, we consider the Kerr parameter to be within a range that includes a slow, medium, and rapidly rotating black hole; the same is done for the swirling parameter. Additionally, we consider both the prograde and the retrograde motion, which are taken are respect to the black hole rotation. We find that disk solutions exist for either case. Moreover, this spin-spin interaction acts as a stabilizing effect for prograde motion and a destabilizing effect for retrograde motion; this increases with the black hole rotation. In addition, the presence of the background rotation makes the emergence of static orbits appear; however, these are all unstable, and therefore, disk solutions with static surfaces do not exist. The breaking of symmetry regarding the equatorial plane causes vertical distribution of the circular orbits and thick torus solutions. The possible disk solutions are classified in terms of the cusps and the value of the effective potential on the cusps. All possible disk solutions can be classified into two different groups.Os efeitos de um campo gravitacional podem ser estudados utilizando-se de partículas e campos teste. Uma análise exemplar inclui uma descrição completa das equações de movimento. Nesta tese reunimos os resultados de pesquisa que foram publicados em quatro artigos e foca na descrição da dinâmica de partículas e campos de teste em espaços-tempos estacionários e axialmente simétricos. As soluções aqui apresentadas são obtidas de forma analítica ou numerica para as equações de campo de Einstein no vácuo e eletrovácuo. Primeiramente, estudamos um modelo escalar-tensor no qual o campo escalar é acoplado de forma não-minimal com (a) o campo eletromagnético e (b) termos de curvatura do espaço-tempo. Investigamos a escalarização espontânea de um sistema auto-gravitante, que é estático, simetricamente cilíndrico e possui campos eletromagnéticos. Demonstramos que um campo escalar massivo e real se condensa no universo magnético de Melvin para ambos os cenários considerados. Para pequenos valores do campo escalar, uma solução de nodo existe, podendo ser expandida em termos de polinômios de Laguerre ao redor do eixo e funções de Bessel assintoticamente. Realizamos uma integração numérica completa das equações de movimento e verificamos que as soluções possuem nodos. Soluções existem para um intervalo finito da constantes de acoplamento. Surpreendetemente, descobrimos que para o caso (a), o intervalo de existência das soluções é mutuamente exclusivo, indicando que diferentes nodos não podem ser interpretadas como estados excitados de uma solução fundamental; o que não acontece para o caso (b), sugerindo que esses dois acoplamentos são de naturezas diferentes. Em segundo lugar, consideramos o movimento geodésico no swirling universe. Demonstramos que as equações geodésicas podem ser desacopladas usando o formalismo de Hamilton-Jacobi, onde uma quarta constante de movimento é encontrada. O conjunto de equações diferenciais desacopladas pode ser integrado analiticamente em termos de funções elementares e elípticas. Uma caracterização completa das possíveis órbitas é discutida. Tipicamente, uma órbita é limitada na direção radial e escapa para o infinito na direção z, exceto para partículas sem momento angular. Além disso, consideramos um espaço-tempo que descreve um buraco negro de Schwarzschild imerso em um swirling universe; neste caso, a equação geodésica não pode ser desacoplada, necessitando de integração numérica. Resultados preliminares sugerem o movimento caótico para partículas massivas ou sem massa. Em seguida, exploramos o movimento de partículas carregadas no electromagnetic swirling universe (EMS). O espaço-tempo EMS é uma nova solução obtida recentemente, caracterizada por ser estacionária e axialmente simétrica. Pode ser vista como a imersão de um espaço-tempo de Melvin em um swirling universe, ou vice-versa. Considerando-se a presença de campos eletromagnéticos, analisamos o movimento de partículas carregadas, tanto com cargas elétricas quanto magnéticas, para uma descrição abrangente. Notavelmente, as equações de movimento também podem ser desacopladas no formalismo de Hamilton-Jacobi. A estrutura matemática das equações de movimento desacopladas assemelha-se à do movimento geodésico no swirling universe. Consequentemente, as equações podem ser integradas analiticamente em termos de funções elementares e elípticas. Tipicamente, uma órbita é qualitativamente similar a uma no swirling universe, sendo limitada na direção radial e escapando para o infinito na direção z. No entanto, existe um caso especial em que a interação eletromagnética pode contrabalançar o efeito de arrasto, permitindo que órbitas de partículas com momento angular não-nulo sejam planas. Finalmente, examinamos os discos geometricamente espessos ao redor de um buraco negro de Kerr imerso em um swirling universe. Devido à interação spin-spin entre o buraco negro e o swirling universe de fundo, uma singularidade cônica aparece no eixo de simetria, afetando significativamente as propriedades geométricas e as soluções de disco, que são afastadas do plano equatorial mesmo com pequenas variações do parâmetro de swirling. Para uma descrição exemplar, consideramos o parâmetro de Kerr dentro de um intervalo que inclui um buraco negro de rotação lenta, média e rápida; o mesmo é feito para o parâmetro de swirling. Além disso, consideramos tanto o movimento progressivo quanto o retrógrado, em relação à rotação do buraco negro. Descobrimos que soluções de disco existem para ambos os casos. Além disso, a interação spin-spin atua como um efeito estabilizador para o movimento progressivo e um efeito desestabilizador para o movimento retrógrado; esse efeito aumenta com a rotação do buraco negro. A presença da rotação de fundo faz com que órbitas estáticas apareçam; no entanto, todas são instáveis, e soluções de disco com superfícies estáticas não existem. A quebra de simetria em relação ao plano equatorial causa uma distribuição vertical das órbitas circulares e soluções de toro espesso. As possíveis soluções de disco são classificadas em termos dos cusp e do valor do potencial efetivo nos cusp. Todas as possíveis soluções de disco podem ser classificadas em dois grupos diferentes.Biblioteca Digitais de Teses e Dissertações da USPHartmann, BettiCapobianco, Rogério Augusto2024-08-13info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/76/76134/tde-09122024-092924/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-12-11T12:43:02Zoai:teses.usp.br:tde-09122024-092924Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-12-11T12:43:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Test particles and fields in axially symmetric relevant settings
Partículas e campos teste em espaço-tempo com simetria axial
title Test particles and fields in axially symmetric relevant settings
spellingShingle Test particles and fields in axially symmetric relevant settings
Capobianco, Rogério Augusto
Accretion disks
Black holes
Buracos negros
Discos de acreção
Geodésicas
Geodesics
Gravidade
Gravity
Scalarização espontânea
Spontaneous scalarization
title_short Test particles and fields in axially symmetric relevant settings
title_full Test particles and fields in axially symmetric relevant settings
title_fullStr Test particles and fields in axially symmetric relevant settings
title_full_unstemmed Test particles and fields in axially symmetric relevant settings
title_sort Test particles and fields in axially symmetric relevant settings
author Capobianco, Rogério Augusto
author_facet Capobianco, Rogério Augusto
author_role author
dc.contributor.none.fl_str_mv Hartmann, Betti
dc.contributor.author.fl_str_mv Capobianco, Rogério Augusto
dc.subject.por.fl_str_mv Accretion disks
Black holes
Buracos negros
Discos de acreção
Geodésicas
Geodesics
Gravidade
Gravity
Scalarização espontânea
Spontaneous scalarization
topic Accretion disks
Black holes
Buracos negros
Discos de acreção
Geodésicas
Geodesics
Gravidade
Gravity
Scalarização espontânea
Spontaneous scalarization
description The effects of a gravitational field can be studied using test particles and fields. An exemplary analysis includes a complete description of the equations of motion. This thesis assembles the research results summarized in four papers and focuses on describing the dynamics of test particles and test fields in stationary and axially symmetric space-time. The solutions considered here are either found analytically or numerically for the vacuum and electro-vacuum Einsteins field equations. Firstly, we study a scalar-tensor model in which the scalar field is non-minimally coupled with (a) the electromagnetic field and (b) the curvature of the space-time. We study the spontaneous scalarization of an extended, self-gravitating system that is static, cylindrically symmetric and possesses electromagnetic fields. We demonstrate that a massive, real-valued scalar field condensates on this Melvin magnetic universe for both considered scenarios. We found that, for small values of the scalar field, a node solution exists; it can be expanded in terms of the Laguerre polynomials around the axes and Bessel functions asymptotically. We performed a full numerical integration of equations of motion and verified that solutions do possess nodes. In addition, solutions exist for a finite range of coupling constants. interestingly, we verified that for case (a), the interval of existence of solutions is mutually exclusive, and hence, different node-solutions cannot be interpreted as excited states of a fundamental solution; this does not happen for the (b) case; suggesting that these two couplings are different in nature. Secondly, we consider the geodesic motion in the swirling universe. We demonstrate that the geodesic equations can be decoupled using the Hamilton-Jacobi formalism, where a fourth constant of motion can be found. The set of uncoupled differential equations can be analytically integrated in terms of elementary and elliptic functions. Additionally, a full characterization of the possible physical orbits is provided. A typical orbit is then bounded in the radial direction and escapes to infinity in the z– direction; the only exception is the case of a particle with no angular momentum. Furthermore, we also consider a spacetime describing a Schwarzschild black hole immersed in a swirling universe; in this case, the geodesic equation cannot be decoupled, and hence, the system must be numerically integrated; preliminary results suggest the emergence of chaotic motion for either massive or massless particles. We proceed by considering the motion of charged particles in the electromagnetic swirling universe (EMS). The EMS space-time is a novel solution recently obtained; as in the above case, it is stationary and axially symmetric. It can be understood as the immersion of a Melvin space-time into a swirling universe, or vice-versa. Since this space-time possesses electromagnetic fields, we consider the motion of charged particles, both electric and magnetic charges, for a complete description. Remarkably, the equations of motion can also be decoupled within the Hamilton-Jacobi formalism; the mathematical structure of the decoupled equations of motion resembles much the geodesic motion in the swirling universe. Therefore, the equations can be analytically integrated in terms of elementary and elliptic functions. A typical orbit is qualitatively similar to an orbit in the swirling universe, being bounded in the radial direction and escaping to infinity in the z– direction. However, there is a special case in which the electromagnetic interaction can counterbalance the dragging effect, and therefore, orbits for particles with non-vanishing angular momentum can be planar. Finally, we consider the case of the geometrically thick disks around a Kerr black hole immersed in a swirling universe. Due to the spin-spin interaction between the black hole and the swirling universe background, a conical singularity appears on the symmetry axis, highly affecting the geometrical properties as well as the disk solutions, which are driven away from the equatorial plane even for small variations of the swirling parameter. In order to provide an exemplary description, we consider the Kerr parameter to be within a range that includes a slow, medium, and rapidly rotating black hole; the same is done for the swirling parameter. Additionally, we consider both the prograde and the retrograde motion, which are taken are respect to the black hole rotation. We find that disk solutions exist for either case. Moreover, this spin-spin interaction acts as a stabilizing effect for prograde motion and a destabilizing effect for retrograde motion; this increases with the black hole rotation. In addition, the presence of the background rotation makes the emergence of static orbits appear; however, these are all unstable, and therefore, disk solutions with static surfaces do not exist. The breaking of symmetry regarding the equatorial plane causes vertical distribution of the circular orbits and thick torus solutions. The possible disk solutions are classified in terms of the cusps and the value of the effective potential on the cusps. All possible disk solutions can be classified into two different groups.
publishDate 2024
dc.date.none.fl_str_mv 2024-08-13
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/76/76134/tde-09122024-092924/
url https://www.teses.usp.br/teses/disponiveis/76/76134/tde-09122024-092924/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1818598503535869952