On rounding algorithms for the 2-edge-connected spanning subgraph problem
| Ano de defesa: | 2024 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/45/45134/tde-22012025-113608/ |
Resumo: | A connected loopless graph is 2-edge-connected if it remains connected after the removal of at most one of its edges. Many combinatorial optimization problems seek, for a given graph with costs on its edges, a spanning subgraph satisfying certain connectivity constraints. The minimum 2-edge-connected spanning subgraph problem (2-ECSSP) is a problem of this type. It can be formulated as an integer linear program that selects edges of minimum total cost satisfying the restriction that every cut of the given graph is covered by at least two of the selected edges. This problem is known to be NP-hard. This thesis develops rounding algorithms for three variants of 2-ECSSP, focusing on rounding half-integral solutions of the corresponding linear relaxation. This family of solutions often yields the largest known integrality ratio for various subproblems of 2-ECSSP. The first problem we investigate is the half-integral 2-ECSSP with unrestricted costs. We develop a novel 5/3-rounding that, to the best of our knowledge, is the first one with a factor better than 2. Moreover, we design a reduction scheme, restricting the problem to 4-edge-connected graphs with maximum degree at most five. Then, we study the matching augmentation problem (MAP), a subproblem of 2-ECSSP in which the edge costs are either 0 or 1 and the zero cost edges define a matching. We survey a better-than-2-approximation, obtained in 2022 by Bamas, Drygala, and Svensson, presenting a comprehensive proof of their result and determining an improved factor. Additionally, we address conjectures posed in their work and present computational experiments to support our findings. Finally, we discuss the 2-edge-connected spanning multisubgraph problem (2-ECSMP), a variation of 2-ECSSP in which multiple copies of the same edge can be selected. We survey a recent work by Boyd et al. on a 4/3-rounding for the half-integral 2-ECSMP and leverage their techniques to prove novel decomposition theorems for 4-regular 4-edge-connected graphs. Finally, we pose two conjectures concerning extensions of the decomposition results, suggesting new research directions. |
| id |
USP_fcc139ea194f8dfcab4856d820b45420 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-22012025-113608 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
On rounding algorithms for the 2-edge-connected spanning subgraph problemAlgoritmos de arredondamento para o problema do subgrafo 2-aresta-conexo mínimo2-edge-connected spanning subgraphAlgoritmos de aproximaçãoApproximation algorithmsAumento de conexidade em emparelhamentosConexidade de grafosGap de integralidadeGraph connectivityIntegrality ratioMatching augmentationSubgrafo 2-aresta-conexoA connected loopless graph is 2-edge-connected if it remains connected after the removal of at most one of its edges. Many combinatorial optimization problems seek, for a given graph with costs on its edges, a spanning subgraph satisfying certain connectivity constraints. The minimum 2-edge-connected spanning subgraph problem (2-ECSSP) is a problem of this type. It can be formulated as an integer linear program that selects edges of minimum total cost satisfying the restriction that every cut of the given graph is covered by at least two of the selected edges. This problem is known to be NP-hard. This thesis develops rounding algorithms for three variants of 2-ECSSP, focusing on rounding half-integral solutions of the corresponding linear relaxation. This family of solutions often yields the largest known integrality ratio for various subproblems of 2-ECSSP. The first problem we investigate is the half-integral 2-ECSSP with unrestricted costs. We develop a novel 5/3-rounding that, to the best of our knowledge, is the first one with a factor better than 2. Moreover, we design a reduction scheme, restricting the problem to 4-edge-connected graphs with maximum degree at most five. Then, we study the matching augmentation problem (MAP), a subproblem of 2-ECSSP in which the edge costs are either 0 or 1 and the zero cost edges define a matching. We survey a better-than-2-approximation, obtained in 2022 by Bamas, Drygala, and Svensson, presenting a comprehensive proof of their result and determining an improved factor. Additionally, we address conjectures posed in their work and present computational experiments to support our findings. Finally, we discuss the 2-edge-connected spanning multisubgraph problem (2-ECSMP), a variation of 2-ECSSP in which multiple copies of the same edge can be selected. We survey a recent work by Boyd et al. on a 4/3-rounding for the half-integral 2-ECSMP and leverage their techniques to prove novel decomposition theorems for 4-regular 4-edge-connected graphs. Finally, we pose two conjectures concerning extensions of the decomposition results, suggesting new research directions.Um grafo conexo sem laços é 2-aresta-conexo se, após a remoção de qualquer uma de suas arestas, o grafo que se obtém é conexo. Diversos problemas em otimização combinatória consistem em, dado um grafo com custos nas arestas, encontrar um subgrafo gerador de menor custo que satisfaz certas restrições de conexidade. O problema do subgrafo 2-aresta-conexo mínimo (2-ECSSP, sigla em inglês) é um problema desse tipo. Ele pode ser formulado como um problema de otimização linear inteira, cujo objetivo é selecionar arestas de menor custo total que satisfazem a restrição de que todo corte do grafo dado é coberto por ao menos duas das arestas selecionadas. Trata-se de um problema NP-difícil. Essa dissertação discute algoritmos para três variantes do 2-ECSSP, que encontram soluções inteiras arredondando soluções meio-inteiras da correspondente relaxação linear. Essa família de soluções geralmente induz o maior gap de integralidade para diversas variantes do 2-ECSSP. Primeiramente, investigamos o 2-ECSSP meio-inteiro com custos irrestritos. Desenvolvemos um 5/3-arredondamento inédito no qual acreditamos ser o primeiro com um fator melhor que 2. Além disso, desenvolvemos uma redução que nos permite restringir a entrada a grafos 4-aresta-conexos com grau no máximo 5. Em seguida, estudamos o problema de aumento de conexidade de emparelhamentos (um subproblema do 2-ECSSP) no qual os custos das arestas são 0 ou 1 e as arestas de custo zero definem um emparelhamento. Discutimos uma melhor-que-2-approximação proposta em 2022 por Bamas, Drygala e Svensson, apresentamos uma prova completa do resultado e determinamos um fator de aproximação aprimorado. Além disso, respondemos conjecturas propostas e apresentamos experimentos computacionais para embasar nossas descobertas. Por fim, discutimos o problema do multisubgrafo 2-aresta-conexo mínimo (2-ECSMP), uma variante do 2-ECSSP na qual é permitido selecionar múltiplas cópias da mesma aresta. Discutimos um resultado de Boyd et al. publicado em 2022, que propõe um 4/3-arredondamento para o 2-ECSMP meio-inteiro. Utilizando as técnicas propostas pelos autores, desenvolvemos resultados inéditos sobre decomposição de grafos 4-regulares 4-aresta-conexos. Por fim, propomos duas conjecturas sobre os resultados de decomposição, sugerindo caminhos para novas pesquisas.Biblioteca Digitais de Teses e Dissertações da USPWakabayashi, YoshikoAzevedo, Gabriel Morete de2024-07-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45134/tde-22012025-113608/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-01-22T19:26:38Zoai:teses.usp.br:tde-22012025-113608Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-01-22T19:26:38Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
On rounding algorithms for the 2-edge-connected spanning subgraph problem Algoritmos de arredondamento para o problema do subgrafo 2-aresta-conexo mínimo |
| title |
On rounding algorithms for the 2-edge-connected spanning subgraph problem |
| spellingShingle |
On rounding algorithms for the 2-edge-connected spanning subgraph problem Azevedo, Gabriel Morete de 2-edge-connected spanning subgraph Algoritmos de aproximação Approximation algorithms Aumento de conexidade em emparelhamentos Conexidade de grafos Gap de integralidade Graph connectivity Integrality ratio Matching augmentation Subgrafo 2-aresta-conexo |
| title_short |
On rounding algorithms for the 2-edge-connected spanning subgraph problem |
| title_full |
On rounding algorithms for the 2-edge-connected spanning subgraph problem |
| title_fullStr |
On rounding algorithms for the 2-edge-connected spanning subgraph problem |
| title_full_unstemmed |
On rounding algorithms for the 2-edge-connected spanning subgraph problem |
| title_sort |
On rounding algorithms for the 2-edge-connected spanning subgraph problem |
| author |
Azevedo, Gabriel Morete de |
| author_facet |
Azevedo, Gabriel Morete de |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Wakabayashi, Yoshiko |
| dc.contributor.author.fl_str_mv |
Azevedo, Gabriel Morete de |
| dc.subject.por.fl_str_mv |
2-edge-connected spanning subgraph Algoritmos de aproximação Approximation algorithms Aumento de conexidade em emparelhamentos Conexidade de grafos Gap de integralidade Graph connectivity Integrality ratio Matching augmentation Subgrafo 2-aresta-conexo |
| topic |
2-edge-connected spanning subgraph Algoritmos de aproximação Approximation algorithms Aumento de conexidade em emparelhamentos Conexidade de grafos Gap de integralidade Graph connectivity Integrality ratio Matching augmentation Subgrafo 2-aresta-conexo |
| description |
A connected loopless graph is 2-edge-connected if it remains connected after the removal of at most one of its edges. Many combinatorial optimization problems seek, for a given graph with costs on its edges, a spanning subgraph satisfying certain connectivity constraints. The minimum 2-edge-connected spanning subgraph problem (2-ECSSP) is a problem of this type. It can be formulated as an integer linear program that selects edges of minimum total cost satisfying the restriction that every cut of the given graph is covered by at least two of the selected edges. This problem is known to be NP-hard. This thesis develops rounding algorithms for three variants of 2-ECSSP, focusing on rounding half-integral solutions of the corresponding linear relaxation. This family of solutions often yields the largest known integrality ratio for various subproblems of 2-ECSSP. The first problem we investigate is the half-integral 2-ECSSP with unrestricted costs. We develop a novel 5/3-rounding that, to the best of our knowledge, is the first one with a factor better than 2. Moreover, we design a reduction scheme, restricting the problem to 4-edge-connected graphs with maximum degree at most five. Then, we study the matching augmentation problem (MAP), a subproblem of 2-ECSSP in which the edge costs are either 0 or 1 and the zero cost edges define a matching. We survey a better-than-2-approximation, obtained in 2022 by Bamas, Drygala, and Svensson, presenting a comprehensive proof of their result and determining an improved factor. Additionally, we address conjectures posed in their work and present computational experiments to support our findings. Finally, we discuss the 2-edge-connected spanning multisubgraph problem (2-ECSMP), a variation of 2-ECSSP in which multiple copies of the same edge can be selected. We survey a recent work by Boyd et al. on a 4/3-rounding for the half-integral 2-ECSMP and leverage their techniques to prove novel decomposition theorems for 4-regular 4-edge-connected graphs. Finally, we pose two conjectures concerning extensions of the decomposition results, suggesting new research directions. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-07-11 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/45/45134/tde-22012025-113608/ |
| url |
https://www.teses.usp.br/teses/disponiveis/45/45134/tde-22012025-113608/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1839839153954488320 |