On rounding algorithms for the 2-edge-connected spanning subgraph problem

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Azevedo, Gabriel Morete de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/45/45134/tde-22012025-113608/
Resumo: A connected loopless graph is 2-edge-connected if it remains connected after the removal of at most one of its edges. Many combinatorial optimization problems seek, for a given graph with costs on its edges, a spanning subgraph satisfying certain connectivity constraints. The minimum 2-edge-connected spanning subgraph problem (2-ECSSP) is a problem of this type. It can be formulated as an integer linear program that selects edges of minimum total cost satisfying the restriction that every cut of the given graph is covered by at least two of the selected edges. This problem is known to be NP-hard. This thesis develops rounding algorithms for three variants of 2-ECSSP, focusing on rounding half-integral solutions of the corresponding linear relaxation. This family of solutions often yields the largest known integrality ratio for various subproblems of 2-ECSSP. The first problem we investigate is the half-integral 2-ECSSP with unrestricted costs. We develop a novel 5/3-rounding that, to the best of our knowledge, is the first one with a factor better than 2. Moreover, we design a reduction scheme, restricting the problem to 4-edge-connected graphs with maximum degree at most five. Then, we study the matching augmentation problem (MAP), a subproblem of 2-ECSSP in which the edge costs are either 0 or 1 and the zero cost edges define a matching. We survey a better-than-2-approximation, obtained in 2022 by Bamas, Drygala, and Svensson, presenting a comprehensive proof of their result and determining an improved factor. Additionally, we address conjectures posed in their work and present computational experiments to support our findings. Finally, we discuss the 2-edge-connected spanning multisubgraph problem (2-ECSMP), a variation of 2-ECSSP in which multiple copies of the same edge can be selected. We survey a recent work by Boyd et al. on a 4/3-rounding for the half-integral 2-ECSMP and leverage their techniques to prove novel decomposition theorems for 4-regular 4-edge-connected graphs. Finally, we pose two conjectures concerning extensions of the decomposition results, suggesting new research directions.
id USP_fcc139ea194f8dfcab4856d820b45420
oai_identifier_str oai:teses.usp.br:tde-22012025-113608
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling On rounding algorithms for the 2-edge-connected spanning subgraph problemAlgoritmos de arredondamento para o problema do subgrafo 2-aresta-conexo mínimo2-edge-connected spanning subgraphAlgoritmos de aproximaçãoApproximation algorithmsAumento de conexidade em emparelhamentosConexidade de grafosGap de integralidadeGraph connectivityIntegrality ratioMatching augmentationSubgrafo 2-aresta-conexoA connected loopless graph is 2-edge-connected if it remains connected after the removal of at most one of its edges. Many combinatorial optimization problems seek, for a given graph with costs on its edges, a spanning subgraph satisfying certain connectivity constraints. The minimum 2-edge-connected spanning subgraph problem (2-ECSSP) is a problem of this type. It can be formulated as an integer linear program that selects edges of minimum total cost satisfying the restriction that every cut of the given graph is covered by at least two of the selected edges. This problem is known to be NP-hard. This thesis develops rounding algorithms for three variants of 2-ECSSP, focusing on rounding half-integral solutions of the corresponding linear relaxation. This family of solutions often yields the largest known integrality ratio for various subproblems of 2-ECSSP. The first problem we investigate is the half-integral 2-ECSSP with unrestricted costs. We develop a novel 5/3-rounding that, to the best of our knowledge, is the first one with a factor better than 2. Moreover, we design a reduction scheme, restricting the problem to 4-edge-connected graphs with maximum degree at most five. Then, we study the matching augmentation problem (MAP), a subproblem of 2-ECSSP in which the edge costs are either 0 or 1 and the zero cost edges define a matching. We survey a better-than-2-approximation, obtained in 2022 by Bamas, Drygala, and Svensson, presenting a comprehensive proof of their result and determining an improved factor. Additionally, we address conjectures posed in their work and present computational experiments to support our findings. Finally, we discuss the 2-edge-connected spanning multisubgraph problem (2-ECSMP), a variation of 2-ECSSP in which multiple copies of the same edge can be selected. We survey a recent work by Boyd et al. on a 4/3-rounding for the half-integral 2-ECSMP and leverage their techniques to prove novel decomposition theorems for 4-regular 4-edge-connected graphs. Finally, we pose two conjectures concerning extensions of the decomposition results, suggesting new research directions.Um grafo conexo sem laços é 2-aresta-conexo se, após a remoção de qualquer uma de suas arestas, o grafo que se obtém é conexo. Diversos problemas em otimização combinatória consistem em, dado um grafo com custos nas arestas, encontrar um subgrafo gerador de menor custo que satisfaz certas restrições de conexidade. O problema do subgrafo 2-aresta-conexo mínimo (2-ECSSP, sigla em inglês) é um problema desse tipo. Ele pode ser formulado como um problema de otimização linear inteira, cujo objetivo é selecionar arestas de menor custo total que satisfazem a restrição de que todo corte do grafo dado é coberto por ao menos duas das arestas selecionadas. Trata-se de um problema NP-difícil. Essa dissertação discute algoritmos para três variantes do 2-ECSSP, que encontram soluções inteiras arredondando soluções meio-inteiras da correspondente relaxação linear. Essa família de soluções geralmente induz o maior gap de integralidade para diversas variantes do 2-ECSSP. Primeiramente, investigamos o 2-ECSSP meio-inteiro com custos irrestritos. Desenvolvemos um 5/3-arredondamento inédito no qual acreditamos ser o primeiro com um fator melhor que 2. Além disso, desenvolvemos uma redução que nos permite restringir a entrada a grafos 4-aresta-conexos com grau no máximo 5. Em seguida, estudamos o problema de aumento de conexidade de emparelhamentos (um subproblema do 2-ECSSP) no qual os custos das arestas são 0 ou 1 e as arestas de custo zero definem um emparelhamento. Discutimos uma melhor-que-2-approximação proposta em 2022 por Bamas, Drygala e Svensson, apresentamos uma prova completa do resultado e determinamos um fator de aproximação aprimorado. Além disso, respondemos conjecturas propostas e apresentamos experimentos computacionais para embasar nossas descobertas. Por fim, discutimos o problema do multisubgrafo 2-aresta-conexo mínimo (2-ECSMP), uma variante do 2-ECSSP na qual é permitido selecionar múltiplas cópias da mesma aresta. Discutimos um resultado de Boyd et al. publicado em 2022, que propõe um 4/3-arredondamento para o 2-ECSMP meio-inteiro. Utilizando as técnicas propostas pelos autores, desenvolvemos resultados inéditos sobre decomposição de grafos 4-regulares 4-aresta-conexos. Por fim, propomos duas conjecturas sobre os resultados de decomposição, sugerindo caminhos para novas pesquisas.Biblioteca Digitais de Teses e Dissertações da USPWakabayashi, YoshikoAzevedo, Gabriel Morete de2024-07-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45134/tde-22012025-113608/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-01-22T19:26:38Zoai:teses.usp.br:tde-22012025-113608Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-01-22T19:26:38Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv On rounding algorithms for the 2-edge-connected spanning subgraph problem
Algoritmos de arredondamento para o problema do subgrafo 2-aresta-conexo mínimo
title On rounding algorithms for the 2-edge-connected spanning subgraph problem
spellingShingle On rounding algorithms for the 2-edge-connected spanning subgraph problem
Azevedo, Gabriel Morete de
2-edge-connected spanning subgraph
Algoritmos de aproximação
Approximation algorithms
Aumento de conexidade em emparelhamentos
Conexidade de grafos
Gap de integralidade
Graph connectivity
Integrality ratio
Matching augmentation
Subgrafo 2-aresta-conexo
title_short On rounding algorithms for the 2-edge-connected spanning subgraph problem
title_full On rounding algorithms for the 2-edge-connected spanning subgraph problem
title_fullStr On rounding algorithms for the 2-edge-connected spanning subgraph problem
title_full_unstemmed On rounding algorithms for the 2-edge-connected spanning subgraph problem
title_sort On rounding algorithms for the 2-edge-connected spanning subgraph problem
author Azevedo, Gabriel Morete de
author_facet Azevedo, Gabriel Morete de
author_role author
dc.contributor.none.fl_str_mv Wakabayashi, Yoshiko
dc.contributor.author.fl_str_mv Azevedo, Gabriel Morete de
dc.subject.por.fl_str_mv 2-edge-connected spanning subgraph
Algoritmos de aproximação
Approximation algorithms
Aumento de conexidade em emparelhamentos
Conexidade de grafos
Gap de integralidade
Graph connectivity
Integrality ratio
Matching augmentation
Subgrafo 2-aresta-conexo
topic 2-edge-connected spanning subgraph
Algoritmos de aproximação
Approximation algorithms
Aumento de conexidade em emparelhamentos
Conexidade de grafos
Gap de integralidade
Graph connectivity
Integrality ratio
Matching augmentation
Subgrafo 2-aresta-conexo
description A connected loopless graph is 2-edge-connected if it remains connected after the removal of at most one of its edges. Many combinatorial optimization problems seek, for a given graph with costs on its edges, a spanning subgraph satisfying certain connectivity constraints. The minimum 2-edge-connected spanning subgraph problem (2-ECSSP) is a problem of this type. It can be formulated as an integer linear program that selects edges of minimum total cost satisfying the restriction that every cut of the given graph is covered by at least two of the selected edges. This problem is known to be NP-hard. This thesis develops rounding algorithms for three variants of 2-ECSSP, focusing on rounding half-integral solutions of the corresponding linear relaxation. This family of solutions often yields the largest known integrality ratio for various subproblems of 2-ECSSP. The first problem we investigate is the half-integral 2-ECSSP with unrestricted costs. We develop a novel 5/3-rounding that, to the best of our knowledge, is the first one with a factor better than 2. Moreover, we design a reduction scheme, restricting the problem to 4-edge-connected graphs with maximum degree at most five. Then, we study the matching augmentation problem (MAP), a subproblem of 2-ECSSP in which the edge costs are either 0 or 1 and the zero cost edges define a matching. We survey a better-than-2-approximation, obtained in 2022 by Bamas, Drygala, and Svensson, presenting a comprehensive proof of their result and determining an improved factor. Additionally, we address conjectures posed in their work and present computational experiments to support our findings. Finally, we discuss the 2-edge-connected spanning multisubgraph problem (2-ECSMP), a variation of 2-ECSSP in which multiple copies of the same edge can be selected. We survey a recent work by Boyd et al. on a 4/3-rounding for the half-integral 2-ECSMP and leverage their techniques to prove novel decomposition theorems for 4-regular 4-edge-connected graphs. Finally, we pose two conjectures concerning extensions of the decomposition results, suggesting new research directions.
publishDate 2024
dc.date.none.fl_str_mv 2024-07-11
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/45/45134/tde-22012025-113608/
url https://www.teses.usp.br/teses/disponiveis/45/45134/tde-22012025-113608/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1839839153954488320