CFD-based multi-objective aerodynamic optimization applies to car rear diffusers.

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Peixoto, Denis Ramon dos Santos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/3/3150/tde-04062021-111211/
Resumo: This dissertation covers the aerodynamic optimization of a car geometry to minimize drag and lift coefficients. The lift coefficient plays an essential role in high-performance cars like race cars to improve the overall downforce and consequently maximize the car grip. More grip can provide more safety during car handling and increase the lateral acceleration of the vehicle during the corners, which is a factor that contributes decisively to reduce the overall lap time. By reducing the drag coefficient it is possible to achieve higher top speed and improve the car\'s fuel efficiency.The main objective of this thesis is to optimize the car geometry with respect to the aerodynamic performance through the CFD simulations. The geometry optimization entails the implementation of a rear diffuser because it is a highly efficient aerodynamic device. Due to the ground effect, the rear diffuser can generate a high downforce level without a substantial drag penalty.The research was divided into two parts. In the first one, simulations were performed using the Ahmed body model due to its simplicity and flow features. The Ahmed body was used as a benchmark to validate the numerical modeling and simulation methodology by comparing them with experimental results in the literature and developing all the optimization processes. The second part was based on a car geometry using the same techniques applied in the Ahmed body study. An optimization loop was built from the studies performed, integrating the MultiObjective Optimization (MOO) with CFD simulations to obtain the best geometry through an automated and reliable process.
id USP_fe137ffdd7eedbf55abb75783fc39def
oai_identifier_str oai:teses.usp.br:tde-04062021-111211
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling CFD-based multi-objective aerodynamic optimization applies to car rear diffusers.Otimização aerodinâmica multiobjetivo baseada em CFD aplicada a difusores traseiros de carros.AerodinâmicaComputational fluid dynamicsDinâmica dos fluidos computacionalDragLiftMulti-objective optimizatioOtimização multiobjetivoVehicle aerodynamicsThis dissertation covers the aerodynamic optimization of a car geometry to minimize drag and lift coefficients. The lift coefficient plays an essential role in high-performance cars like race cars to improve the overall downforce and consequently maximize the car grip. More grip can provide more safety during car handling and increase the lateral acceleration of the vehicle during the corners, which is a factor that contributes decisively to reduce the overall lap time. By reducing the drag coefficient it is possible to achieve higher top speed and improve the car\'s fuel efficiency.The main objective of this thesis is to optimize the car geometry with respect to the aerodynamic performance through the CFD simulations. The geometry optimization entails the implementation of a rear diffuser because it is a highly efficient aerodynamic device. Due to the ground effect, the rear diffuser can generate a high downforce level without a substantial drag penalty.The research was divided into two parts. In the first one, simulations were performed using the Ahmed body model due to its simplicity and flow features. The Ahmed body was used as a benchmark to validate the numerical modeling and simulation methodology by comparing them with experimental results in the literature and developing all the optimization processes. The second part was based on a car geometry using the same techniques applied in the Ahmed body study. An optimization loop was built from the studies performed, integrating the MultiObjective Optimization (MOO) with CFD simulations to obtain the best geometry through an automated and reliable process.Esta dissertação trata da otimização aerodinâmica da geometria de um carro com o objetivo de minimizar os coeficientes de arrasto e sustentação. O coeficiente de sustentação desempenha um importante papel nos carros de alto desempenho, como por exemplo carros de corrida, a fim de melhorar a força sustentação negativa, e consequentemente, maximizar a aderência do carro. Mais aderência pode proporcionar mais segurança quando se está dirigindo um carro e aumentar a aceleração lateral do carro nas curvas, o que é um fator que contribui decisivamente para a redução o tempo total da volta. Reduzindo o coeficiente de arrasto é possível atingir uma velocidade máxima mais alta, e melhorar a eficiência energética do carro. O objetivo principal desta tese é otimizar a geometria do carro levando em conta o desempenho aerodinâmico através das simulações CFD. A proposta de otimização da geometria é a implementação de um difusor traseiro, por se tratar de um dispositivo aerodinâmico de alta eficiência. Devido ao efeito solo, o difusor traseiro pode gerar um grande aumento de força sustentação negativa sem penalidade excessiva de arrasto. A pesquisa foi dividida em duas partes: Na primeira, todas as simulações foram feitas empregando o corpo de Ahmed, devido à sua simplicidade e características do escoamento. O corpo Ahmed foi usado como uma referência para validar a metodologia de simulação numérica, através da comparação com resultado e para desenvolver todo o processo de otimização. A segunda parte foi baseada na geometria de um carro usando as mesmas técnicas aplicadas no estudo do corpo de Ahmed. A partir dos estudos realizados foi feito um loop de otimização integrando a Otimização Multi-Objetivo (MOO) com Simulações CFD para obter a melhor geometria a partir de um processo automatizado e confiável.Biblioteca Digitais de Teses e Dissertações da USPCarmo, Bruno SouzaPeixoto, Denis Ramon dos Santos2021-02-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/3/3150/tde-04062021-111211/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-10-09T13:03:42Zoai:teses.usp.br:tde-04062021-111211Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T13:03:42Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv CFD-based multi-objective aerodynamic optimization applies to car rear diffusers.
Otimização aerodinâmica multiobjetivo baseada em CFD aplicada a difusores traseiros de carros.
title CFD-based multi-objective aerodynamic optimization applies to car rear diffusers.
spellingShingle CFD-based multi-objective aerodynamic optimization applies to car rear diffusers.
Peixoto, Denis Ramon dos Santos
Aerodinâmica
Computational fluid dynamics
Dinâmica dos fluidos computacional
Drag
Lift
Multi-objective optimizatio
Otimização multiobjetivo
Vehicle aerodynamics
title_short CFD-based multi-objective aerodynamic optimization applies to car rear diffusers.
title_full CFD-based multi-objective aerodynamic optimization applies to car rear diffusers.
title_fullStr CFD-based multi-objective aerodynamic optimization applies to car rear diffusers.
title_full_unstemmed CFD-based multi-objective aerodynamic optimization applies to car rear diffusers.
title_sort CFD-based multi-objective aerodynamic optimization applies to car rear diffusers.
author Peixoto, Denis Ramon dos Santos
author_facet Peixoto, Denis Ramon dos Santos
author_role author
dc.contributor.none.fl_str_mv Carmo, Bruno Souza
dc.contributor.author.fl_str_mv Peixoto, Denis Ramon dos Santos
dc.subject.por.fl_str_mv Aerodinâmica
Computational fluid dynamics
Dinâmica dos fluidos computacional
Drag
Lift
Multi-objective optimizatio
Otimização multiobjetivo
Vehicle aerodynamics
topic Aerodinâmica
Computational fluid dynamics
Dinâmica dos fluidos computacional
Drag
Lift
Multi-objective optimizatio
Otimização multiobjetivo
Vehicle aerodynamics
description This dissertation covers the aerodynamic optimization of a car geometry to minimize drag and lift coefficients. The lift coefficient plays an essential role in high-performance cars like race cars to improve the overall downforce and consequently maximize the car grip. More grip can provide more safety during car handling and increase the lateral acceleration of the vehicle during the corners, which is a factor that contributes decisively to reduce the overall lap time. By reducing the drag coefficient it is possible to achieve higher top speed and improve the car\'s fuel efficiency.The main objective of this thesis is to optimize the car geometry with respect to the aerodynamic performance through the CFD simulations. The geometry optimization entails the implementation of a rear diffuser because it is a highly efficient aerodynamic device. Due to the ground effect, the rear diffuser can generate a high downforce level without a substantial drag penalty.The research was divided into two parts. In the first one, simulations were performed using the Ahmed body model due to its simplicity and flow features. The Ahmed body was used as a benchmark to validate the numerical modeling and simulation methodology by comparing them with experimental results in the literature and developing all the optimization processes. The second part was based on a car geometry using the same techniques applied in the Ahmed body study. An optimization loop was built from the studies performed, integrating the MultiObjective Optimization (MOO) with CFD simulations to obtain the best geometry through an automated and reliable process.
publishDate 2021
dc.date.none.fl_str_mv 2021-02-10
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/3/3150/tde-04062021-111211/
url https://www.teses.usp.br/teses/disponiveis/3/3150/tde-04062021-111211/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1818279169357774848