Metodologia heurística na otimização da programação dos planos de manutenção preventiva e preditiva na agroindústria

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Obal, Jonatas Santana
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Ponta Grossa
Brasil
Programa de Pós-Graduação em Engenharia de Produção
UTFPR
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/31247
Resumo: Preventive and predictive maintenance are carried out to prevent failures, thus improving the performance of machines and industry production. However, the planning of preventive and predictive maintenance is a challenge in industries, as they must consider issues such as, the allocated cost to maintenance, the available maintenance time of each equipment and the previous survey of the manufacturer's considerations. In addition, programming maintenance plans is a humanly difficult task in terms of the distribution of tasks due to their criticality to technicians on working days, subject to restrictions on working time, day of execution, among others. In this sense, this work proposes a heuristic methodology to optimize the programming of preventive and predictive maintenance plans in the agroindustry. Considering maintenance plan data, their pre-processing verifies the availability of staff, both for plans that must occur on specific days and for those that can be carried out on any day of the week. With pre-processed data, the proposed heuristic should be executed weekly, and its output is a list of plans that will be carried out on each day of the week. The heuristic was applied in a test case and later replicated in a real case of an agroindustry. The application of the heuristic in a fictitious case allowed the verification of its operation, while its application in real data demonstrated its efficiency and answered questions that were beyond expectations. The real case data was extracted from 1680 SAP assets (from the German: Systemanalysis Programmentwicklung. From this application it was verified the need of thirteen weeks to update the plans, that is, no plan has a negative deadline. The average of plans in a week is 432, which is planned using around 3 seconds by the heuristic. The results were presented to the maintenance manager, who received with surprise that 75% of the maintenance plans were with negative deadline. Regarding the output, the speed of solution presented by the heuristic was a very positive point. This will drastically decrease the planner's planning time, which currently takes around two days to plan the week, while the heuristic does it almost instantly.
id UTFPR-12_28e779fd4765f50f5b21047e2a9a12ce
oai_identifier_str oai:repositorio.utfpr.edu.br:1/31247
network_acronym_str UTFPR-12
network_name_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
repository_id_str
spelling Metodologia heurística na otimização da programação dos planos de manutenção preventiva e preditiva na agroindústriaHeuristic methodology in the optimization of the schedule of preventive and predictive maintenance plans in agroindustryHeurísticaManutençãoProgramação estruturadaAgroindústriaHeuristicMaintenanceStructured programmingAgricultural industriesCNPQ::ENGENHARIAS::ENGENHARIA DE PRODUCAOEngenharia/Tecnologia/GestãoPreventive and predictive maintenance are carried out to prevent failures, thus improving the performance of machines and industry production. However, the planning of preventive and predictive maintenance is a challenge in industries, as they must consider issues such as, the allocated cost to maintenance, the available maintenance time of each equipment and the previous survey of the manufacturer's considerations. In addition, programming maintenance plans is a humanly difficult task in terms of the distribution of tasks due to their criticality to technicians on working days, subject to restrictions on working time, day of execution, among others. In this sense, this work proposes a heuristic methodology to optimize the programming of preventive and predictive maintenance plans in the agroindustry. Considering maintenance plan data, their pre-processing verifies the availability of staff, both for plans that must occur on specific days and for those that can be carried out on any day of the week. With pre-processed data, the proposed heuristic should be executed weekly, and its output is a list of plans that will be carried out on each day of the week. The heuristic was applied in a test case and later replicated in a real case of an agroindustry. The application of the heuristic in a fictitious case allowed the verification of its operation, while its application in real data demonstrated its efficiency and answered questions that were beyond expectations. The real case data was extracted from 1680 SAP assets (from the German: Systemanalysis Programmentwicklung. From this application it was verified the need of thirteen weeks to update the plans, that is, no plan has a negative deadline. The average of plans in a week is 432, which is planned using around 3 seconds by the heuristic. The results were presented to the maintenance manager, who received with surprise that 75% of the maintenance plans were with negative deadline. Regarding the output, the speed of solution presented by the heuristic was a very positive point. This will drastically decrease the planner's planning time, which currently takes around two days to plan the week, while the heuristic does it almost instantly.As manutenções preventiva e preditiva são realizadas de modo a evitar que falhas aconteçam, assim melhorando o desempenho das máquinas e da produção da indústria. Porém, o planejamento da manutenção preventiva e preditiva é um desafio nas indústrias, pois devem considerar questões como, por exemplo, os custos destinados à manutenção, o tempo de cada equipamento disponível para manutenção e o levantamento prévio das considerações do fabricante. Além destas questões, a programação dos planos de manutenção é uma tarefa humanamente difícil no que tange à distribuição das tarefas pela sua criticidade aos técnicos nos dias de trabalho, sujeito a restrições de tempo de trabalho, dia de execução, entre outras. Neste sentido, este trabalho propõe uma metodologia heurística na otimização da programação dos planos de manutenção preventiva e preditiva na agroindústria. Considerando os dados dos planos de manutenção, o pré-processamento destes verifica a disponibilidade de staff, tanto para planos que devem ocorrer em dias específicos quanto para os que podem ser realizados em qualquer dia da semana. Com os dados pré-processados, a heurística proposta deverá ser executada semanalmente, e sua saída é uma lista de planos que serão realizados em cada dia da semana. A heurística foi aplicada em um caso de teste e posteriormente replicado em um caso real de uma agroindústria. A aplicação da heurística em caso fictício permitiu a verificação de seu funcionamento, enquanto sua aplicação em dados reais demonstrou sua eficiência e respondeu questões que estavam além das expectativas. Os dados do caso real foram extraídos de 1680 ativos do SAP (do alemão: Systemanalysis Programmentwicklung, que, em português, significa Desenvolvimento de Programas para Análise de Sistema) para aplicação na heurística. Desta aplicação verificou-se a necessidade de treze semanas para colocar todos os planos em dia, ou seja, para que nenhum plano fique com deadline negativo. A média de planos programados por semana é de 432, sendo programadas, em média, em 3 segundos pela heurística. Os resultados foram apresentados ao gestor de manutenção, o qual recebeu com surpresa que 75% dos planos de manutenção estavam com deadline negativo. Em relação ao output, a rapidez de solução apresentada pela heurística foi um ponto muito positivo. Isto irá diminuir drasticamente o tempo de planejamento do planejador, que hoje leva em torno de dois dias para planejar a semana, enquanto a heurística o faz quase instantaneamente.Universidade Tecnológica Federal do ParanáPonta GrossaBrasilPrograma de Pós-Graduação em Engenharia de ProduçãoUTFPRFrancisco, Antonio Carlos dehttps://orcid.org/0000-0003-0401-4445http://lattes.cnpq.br/6457056051910603Francisco, Antonio Carlos dehttps://orcid.org/0000-0003-0401-4445http://lattes.cnpq.br/6457056051910603Piekarski, Cassiano Morohttps://orcid.org/0000-0002-5085-101Xhttp://lattes.cnpq.br/7937550774712059Souza, Jovani Taveira dehttps://orcid.org/0000-0001-8545-8149http://lattes.cnpq.br/8929110034758487Obal, Jonatas Santana2023-05-02T12:49:38Z2023-05-02T12:49:38Z2023-02-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfOBAL, Jonatas Santana. Metodologia heurística na otimização da programação dos planos de manutenção preventiva e preditiva na agroindústria. 2023. Dissertação (Mestrado em Engenharia de Produção) - Universidade Tecnológica Federal do Paraná, Ponta Grossa, 2023.http://repositorio.utfpr.edu.br/jspui/handle/1/31247porhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))instname:Universidade Tecnológica Federal do Paraná (UTFPR)instacron:UTFPR2023-05-03T06:08:19Zoai:repositorio.utfpr.edu.br:1/31247Repositório InstitucionalPUBhttp://repositorio.utfpr.edu.br:8080/oai/requestriut@utfpr.edu.br || sibi@utfpr.edu.bropendoar:2023-05-03T06:08:19Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)false
dc.title.none.fl_str_mv Metodologia heurística na otimização da programação dos planos de manutenção preventiva e preditiva na agroindústria
Heuristic methodology in the optimization of the schedule of preventive and predictive maintenance plans in agroindustry
title Metodologia heurística na otimização da programação dos planos de manutenção preventiva e preditiva na agroindústria
spellingShingle Metodologia heurística na otimização da programação dos planos de manutenção preventiva e preditiva na agroindústria
Obal, Jonatas Santana
Heurística
Manutenção
Programação estruturada
Agroindústria
Heuristic
Maintenance
Structured programming
Agricultural industries
CNPQ::ENGENHARIAS::ENGENHARIA DE PRODUCAO
Engenharia/Tecnologia/Gestão
title_short Metodologia heurística na otimização da programação dos planos de manutenção preventiva e preditiva na agroindústria
title_full Metodologia heurística na otimização da programação dos planos de manutenção preventiva e preditiva na agroindústria
title_fullStr Metodologia heurística na otimização da programação dos planos de manutenção preventiva e preditiva na agroindústria
title_full_unstemmed Metodologia heurística na otimização da programação dos planos de manutenção preventiva e preditiva na agroindústria
title_sort Metodologia heurística na otimização da programação dos planos de manutenção preventiva e preditiva na agroindústria
author Obal, Jonatas Santana
author_facet Obal, Jonatas Santana
author_role author
dc.contributor.none.fl_str_mv Francisco, Antonio Carlos de
https://orcid.org/0000-0003-0401-4445
http://lattes.cnpq.br/6457056051910603
Francisco, Antonio Carlos de
https://orcid.org/0000-0003-0401-4445
http://lattes.cnpq.br/6457056051910603
Piekarski, Cassiano Moro
https://orcid.org/0000-0002-5085-101X
http://lattes.cnpq.br/7937550774712059
Souza, Jovani Taveira de
https://orcid.org/0000-0001-8545-8149
http://lattes.cnpq.br/8929110034758487
dc.contributor.author.fl_str_mv Obal, Jonatas Santana
dc.subject.por.fl_str_mv Heurística
Manutenção
Programação estruturada
Agroindústria
Heuristic
Maintenance
Structured programming
Agricultural industries
CNPQ::ENGENHARIAS::ENGENHARIA DE PRODUCAO
Engenharia/Tecnologia/Gestão
topic Heurística
Manutenção
Programação estruturada
Agroindústria
Heuristic
Maintenance
Structured programming
Agricultural industries
CNPQ::ENGENHARIAS::ENGENHARIA DE PRODUCAO
Engenharia/Tecnologia/Gestão
description Preventive and predictive maintenance are carried out to prevent failures, thus improving the performance of machines and industry production. However, the planning of preventive and predictive maintenance is a challenge in industries, as they must consider issues such as, the allocated cost to maintenance, the available maintenance time of each equipment and the previous survey of the manufacturer's considerations. In addition, programming maintenance plans is a humanly difficult task in terms of the distribution of tasks due to their criticality to technicians on working days, subject to restrictions on working time, day of execution, among others. In this sense, this work proposes a heuristic methodology to optimize the programming of preventive and predictive maintenance plans in the agroindustry. Considering maintenance plan data, their pre-processing verifies the availability of staff, both for plans that must occur on specific days and for those that can be carried out on any day of the week. With pre-processed data, the proposed heuristic should be executed weekly, and its output is a list of plans that will be carried out on each day of the week. The heuristic was applied in a test case and later replicated in a real case of an agroindustry. The application of the heuristic in a fictitious case allowed the verification of its operation, while its application in real data demonstrated its efficiency and answered questions that were beyond expectations. The real case data was extracted from 1680 SAP assets (from the German: Systemanalysis Programmentwicklung. From this application it was verified the need of thirteen weeks to update the plans, that is, no plan has a negative deadline. The average of plans in a week is 432, which is planned using around 3 seconds by the heuristic. The results were presented to the maintenance manager, who received with surprise that 75% of the maintenance plans were with negative deadline. Regarding the output, the speed of solution presented by the heuristic was a very positive point. This will drastically decrease the planner's planning time, which currently takes around two days to plan the week, while the heuristic does it almost instantly.
publishDate 2023
dc.date.none.fl_str_mv 2023-05-02T12:49:38Z
2023-05-02T12:49:38Z
2023-02-23
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv OBAL, Jonatas Santana. Metodologia heurística na otimização da programação dos planos de manutenção preventiva e preditiva na agroindústria. 2023. Dissertação (Mestrado em Engenharia de Produção) - Universidade Tecnológica Federal do Paraná, Ponta Grossa, 2023.
http://repositorio.utfpr.edu.br/jspui/handle/1/31247
identifier_str_mv OBAL, Jonatas Santana. Metodologia heurística na otimização da programação dos planos de manutenção preventiva e preditiva na agroindústria. 2023. Dissertação (Mestrado em Engenharia de Produção) - Universidade Tecnológica Federal do Paraná, Ponta Grossa, 2023.
url http://repositorio.utfpr.edu.br/jspui/handle/1/31247
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Tecnológica Federal do Paraná
Ponta Grossa
Brasil
Programa de Pós-Graduação em Engenharia de Produção
UTFPR
publisher.none.fl_str_mv Universidade Tecnológica Federal do Paraná
Ponta Grossa
Brasil
Programa de Pós-Graduação em Engenharia de Produção
UTFPR
dc.source.none.fl_str_mv reponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
instname:Universidade Tecnológica Federal do Paraná (UTFPR)
instacron:UTFPR
instname_str Universidade Tecnológica Federal do Paraná (UTFPR)
instacron_str UTFPR
institution UTFPR
reponame_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
collection Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
repository.name.fl_str_mv Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)
repository.mail.fl_str_mv riut@utfpr.edu.br || sibi@utfpr.edu.br
_version_ 1850498356103610368