Balancing optimization of robotic welding lines: model and case study

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Lopes, Thiago Cantos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Curitiba
Brasil
Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial
UTFPR
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/2621
Resumo: Robotic welding manufacturing lines are production lines common in automobile industries. During a vehicle's production, the vehicle's metal structure must be welded in a single resistant body. This is made by hundreds of spot-welding points, each of which tie locally two or more metal plates. Efficiently distributing these welding points amongst robots is particularly challenging, taking in account that: not all robots can perform all weld points, robots must move their welding tools between weld points, and robots might interfere with one another if they use the same geometrical space. There are multiple feasible manners to distribute the welding points. However, each of these forms generates different economical results: If a robot performs too many points, it will become a line bottleneck and reduce average throughput. To find the set of operational decisions that yields the best output is the goal of optimization techniques. There are a wide variety of such techniques described in operations research and computer sciences literature: mathematical models, algorithms, heuristics, meta-heuristics, etc. In the industrial context, these techniques were adapted to related line balancing problems. However, these adaptations can only solve the specific variants they were designed to address. While parallels can be drawn between aspects of robotic welding lines and many of such variants, the full combined set of characteristics of the studied lines is not treatable by (or convertible to) any of them. This dissertation develops a framework to optimize such lines, based on mixed-integer linear programing model developed to describe the problem. It also presents a case study to discuss and illustrate possible difficulties and how to overcome them. The presented model was applied to data from the factory's robotic welding lines composed of forty-two robots (divided in thirteen stations), four vehicle models and over seven hundred welding points for each vehicle. The weighted average reduction percentage in cycle time obtained by the model was 17.5%. Model variants, designed to aid further works are presented and discussed.
id UTFPR-12_436d4a91e21c69766f701a08019654bf
oai_identifier_str oai:repositorio.utfpr.edu.br:1/2621
network_acronym_str UTFPR-12
network_name_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
repository_id_str
spelling Balancing optimization of robotic welding lines: model and case studyOtimização do balanceamento de linhas robóticas de solda: modelo e estudo de casoProgramação linearBalanceamento de linha de montagemRobôs industriaisSolda e soldagemAutomóveis - Projetos e construçãoIndústria automobilísticaEngenharia elétricaLinear programmingAssembly-line balancingRobots, IndustrialSolder and solderingAutomobiles - Design and constructionAutomobile industry and tradeElectric engineeringCNPQ::ENGENHARIAS::ENGENHARIA DE PRODUCAO::PESQUISA OPERACIONAL::PROGRAMACAO LINEAR, NAO-LINEAR, MISTA E DINAMICAEngenharia ElétricaRobotic welding manufacturing lines are production lines common in automobile industries. During a vehicle's production, the vehicle's metal structure must be welded in a single resistant body. This is made by hundreds of spot-welding points, each of which tie locally two or more metal plates. Efficiently distributing these welding points amongst robots is particularly challenging, taking in account that: not all robots can perform all weld points, robots must move their welding tools between weld points, and robots might interfere with one another if they use the same geometrical space. There are multiple feasible manners to distribute the welding points. However, each of these forms generates different economical results: If a robot performs too many points, it will become a line bottleneck and reduce average throughput. To find the set of operational decisions that yields the best output is the goal of optimization techniques. There are a wide variety of such techniques described in operations research and computer sciences literature: mathematical models, algorithms, heuristics, meta-heuristics, etc. In the industrial context, these techniques were adapted to related line balancing problems. However, these adaptations can only solve the specific variants they were designed to address. While parallels can be drawn between aspects of robotic welding lines and many of such variants, the full combined set of characteristics of the studied lines is not treatable by (or convertible to) any of them. This dissertation develops a framework to optimize such lines, based on mixed-integer linear programing model developed to describe the problem. It also presents a case study to discuss and illustrate possible difficulties and how to overcome them. The presented model was applied to data from the factory's robotic welding lines composed of forty-two robots (divided in thirteen stations), four vehicle models and over seven hundred welding points for each vehicle. The weighted average reduction percentage in cycle time obtained by the model was 17.5%. Model variants, designed to aid further works are presented and discussed.FA; UTFPR; RENAULTLinhas robóticas de solda são comuns na indústria automobilística. Durante a produção de um veículo, sua estrutura metálica precisa ser soldada em um único corpo resistente. Isso é feito por meio de centenas de soldas a ponto por resistência, cada uma liga localmente duas ou mais placas metálicas. Distribuir eficientemente esses pontos entre robôs é particularmente desafiador, levando em conta que: cada robôs podem fazer acessar uma parte dos pontos de solda, há tempo de movimentação entre pontos e robôs podem colidir entre si se ocuparem o mesmo espaço físico ao mesmo tempo. Há muitas maneiras factíveis de distribuir pontos de solda. No entanto, cada uma gera um resultado econômico diferente: Se um robô soldar muitos pontos se tornará um gargalo e reduzirá a taxa média de produção.Obter o conjunto de decisões operacionais que gera o melhor desempenho é o objetivo de técnicas de otimização. Há uma ampla variedade de técnicas descritas na literatura de pesquisa operacional e ciência da computação: modelos matemáticos, algoritmos, heurísticas, meta-heurísticas, etc. No contexto industrial, tais técnicas foram adaptadas para diversas variantes de problemas práticos. No entanto, estas adaptações só podem resolver as variantes para as quais foram idealizadas. Se por um lado podem se traçar paralelos entre vários aspectos de linhas robóticas de solda e tais variantes, por outro o conjunto completo de características das linhas estudadas não é tratável por (ou convertível em) nenhuma delas. A presente dissertação desenvolve uma abordagem para otimizar tais linhas, baseada em um modelo de programação linear inteira mista desenvolvido para descrever o problema. Ela também apresenta um estudo de caso para discutir e ilustrar possíveis dificuldades de aplicação e como superá-las. O modelo apresentado foi aplicado a dados de uma linha robótica de solda da fábrica, composta por quarenta e dois robôs, quatro modelos de veículos e mais de setecentos pontos de solda por veículo. A média ponderada da redução em tempo de ciclo obtida pelo modelo foi de 17.5%. Variantes do modelo, concebidas para auxiliar trabalhos futuros, são apresentadas e discutidas.Universidade Tecnológica Federal do ParanáCuritibaBrasilPrograma de Pós-Graduação em Engenharia Elétrica e Informática IndustrialUTFPRMagatão, Leandrohttp://lattes.cnpq.br/4652695720103701Magatão, LeandroSantos, Maristela Oliveira dosSilva, Arinei Carlos Lindbeck daLopes, Thiago Cantos2017-11-21T00:21:48Z2017-11-21T00:21:48Z2017-04-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfLOPES, Thiago Cantos. Balancing optimization of robotic welding lines: model and case study. 2017. 160 f. Dissertação (Mestrado em Engenharia Elétrica e Informática) - Universidade Tecnológica Federal do Paraná, Curitiba, 2017.http://repositorio.utfpr.edu.br/jspui/handle/1/2621enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))instname:Universidade Tecnológica Federal do Paraná (UTFPR)instacron:UTFPR2017-11-21T00:21:48Zoai:repositorio.utfpr.edu.br:1/2621Repositório InstitucionalPUBhttp://repositorio.utfpr.edu.br:8080/oai/requestriut@utfpr.edu.br || sibi@utfpr.edu.bropendoar:2017-11-21T00:21:48Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)false
dc.title.none.fl_str_mv Balancing optimization of robotic welding lines: model and case study
Otimização do balanceamento de linhas robóticas de solda: modelo e estudo de caso
title Balancing optimization of robotic welding lines: model and case study
spellingShingle Balancing optimization of robotic welding lines: model and case study
Lopes, Thiago Cantos
Programação linear
Balanceamento de linha de montagem
Robôs industriais
Solda e soldagem
Automóveis - Projetos e construção
Indústria automobilística
Engenharia elétrica
Linear programming
Assembly-line balancing
Robots, Industrial
Solder and soldering
Automobiles - Design and construction
Automobile industry and trade
Electric engineering
CNPQ::ENGENHARIAS::ENGENHARIA DE PRODUCAO::PESQUISA OPERACIONAL::PROGRAMACAO LINEAR, NAO-LINEAR, MISTA E DINAMICA
Engenharia Elétrica
title_short Balancing optimization of robotic welding lines: model and case study
title_full Balancing optimization of robotic welding lines: model and case study
title_fullStr Balancing optimization of robotic welding lines: model and case study
title_full_unstemmed Balancing optimization of robotic welding lines: model and case study
title_sort Balancing optimization of robotic welding lines: model and case study
author Lopes, Thiago Cantos
author_facet Lopes, Thiago Cantos
author_role author
dc.contributor.none.fl_str_mv Magatão, Leandro
http://lattes.cnpq.br/4652695720103701
Magatão, Leandro
Santos, Maristela Oliveira dos
Silva, Arinei Carlos Lindbeck da
dc.contributor.author.fl_str_mv Lopes, Thiago Cantos
dc.subject.por.fl_str_mv Programação linear
Balanceamento de linha de montagem
Robôs industriais
Solda e soldagem
Automóveis - Projetos e construção
Indústria automobilística
Engenharia elétrica
Linear programming
Assembly-line balancing
Robots, Industrial
Solder and soldering
Automobiles - Design and construction
Automobile industry and trade
Electric engineering
CNPQ::ENGENHARIAS::ENGENHARIA DE PRODUCAO::PESQUISA OPERACIONAL::PROGRAMACAO LINEAR, NAO-LINEAR, MISTA E DINAMICA
Engenharia Elétrica
topic Programação linear
Balanceamento de linha de montagem
Robôs industriais
Solda e soldagem
Automóveis - Projetos e construção
Indústria automobilística
Engenharia elétrica
Linear programming
Assembly-line balancing
Robots, Industrial
Solder and soldering
Automobiles - Design and construction
Automobile industry and trade
Electric engineering
CNPQ::ENGENHARIAS::ENGENHARIA DE PRODUCAO::PESQUISA OPERACIONAL::PROGRAMACAO LINEAR, NAO-LINEAR, MISTA E DINAMICA
Engenharia Elétrica
description Robotic welding manufacturing lines are production lines common in automobile industries. During a vehicle's production, the vehicle's metal structure must be welded in a single resistant body. This is made by hundreds of spot-welding points, each of which tie locally two or more metal plates. Efficiently distributing these welding points amongst robots is particularly challenging, taking in account that: not all robots can perform all weld points, robots must move their welding tools between weld points, and robots might interfere with one another if they use the same geometrical space. There are multiple feasible manners to distribute the welding points. However, each of these forms generates different economical results: If a robot performs too many points, it will become a line bottleneck and reduce average throughput. To find the set of operational decisions that yields the best output is the goal of optimization techniques. There are a wide variety of such techniques described in operations research and computer sciences literature: mathematical models, algorithms, heuristics, meta-heuristics, etc. In the industrial context, these techniques were adapted to related line balancing problems. However, these adaptations can only solve the specific variants they were designed to address. While parallels can be drawn between aspects of robotic welding lines and many of such variants, the full combined set of characteristics of the studied lines is not treatable by (or convertible to) any of them. This dissertation develops a framework to optimize such lines, based on mixed-integer linear programing model developed to describe the problem. It also presents a case study to discuss and illustrate possible difficulties and how to overcome them. The presented model was applied to data from the factory's robotic welding lines composed of forty-two robots (divided in thirteen stations), four vehicle models and over seven hundred welding points for each vehicle. The weighted average reduction percentage in cycle time obtained by the model was 17.5%. Model variants, designed to aid further works are presented and discussed.
publishDate 2017
dc.date.none.fl_str_mv 2017-11-21T00:21:48Z
2017-11-21T00:21:48Z
2017-04-19
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv LOPES, Thiago Cantos. Balancing optimization of robotic welding lines: model and case study. 2017. 160 f. Dissertação (Mestrado em Engenharia Elétrica e Informática) - Universidade Tecnológica Federal do Paraná, Curitiba, 2017.
http://repositorio.utfpr.edu.br/jspui/handle/1/2621
identifier_str_mv LOPES, Thiago Cantos. Balancing optimization of robotic welding lines: model and case study. 2017. 160 f. Dissertação (Mestrado em Engenharia Elétrica e Informática) - Universidade Tecnológica Federal do Paraná, Curitiba, 2017.
url http://repositorio.utfpr.edu.br/jspui/handle/1/2621
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Tecnológica Federal do Paraná
Curitiba
Brasil
Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial
UTFPR
publisher.none.fl_str_mv Universidade Tecnológica Federal do Paraná
Curitiba
Brasil
Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial
UTFPR
dc.source.none.fl_str_mv reponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
instname:Universidade Tecnológica Federal do Paraná (UTFPR)
instacron:UTFPR
instname_str Universidade Tecnológica Federal do Paraná (UTFPR)
instacron_str UTFPR
institution UTFPR
reponame_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
collection Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
repository.name.fl_str_mv Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)
repository.mail.fl_str_mv riut@utfpr.edu.br || sibi@utfpr.edu.br
_version_ 1850498319384576000