Advancements in two-phase flow regime classification: a comparative study of machine learning and deep learning approaches using wire-mesh sensor data

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Ambrosio, Jefferson dos Santos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Curitiba
Brasil
Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial
UTFPR
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/36002
Resumo: Flow regime classification is essential for analyzing and modeling two-phase flows, as it demarcates the flow behavior and influences the selection of appropriate predictive models. Machine learning-based approaches have gained relevance in flow regime classification research in the last few years. However, they are still solidly based on the construction and careful definition of hand-crafted features. Deep learning approaches, on the other hand, can provide more robust and end-to-end solutions. However, they are underexplored and have not evaluated the generalization of the models to other data or acquisition systems. In this thesis, we compare two different approaches for classifying flow patterns (churn, bubbly, and slug) using time series of void fraction from a wire-mesh sensor. In the first, defined as MoG+SVM, the time series is modeled as a stochastic process of independent and identically distributed samples with probability density function described by a Mixture of Gaussian (MoG) model. The estimated parameters of the mixture are then fed into a Support Vector Machine (SVM), yielding the flow pattern classification. The second, defined as SOTA-DL, we propose using end-to-end state-of-the-art (SOTA) time-series classification methods (ResNet, LSTM-FCN, and TSTPlus) for two-phase flow patterns. We also present the generalization analysis of the models with cross-dataset experiments, training the model with one dataset and testing it with another dataset collected in another system for two datasets, here defined as HZDR and TUD. The results demonstrate that the deep learning-based approach (SOTA-DL) presents superior classification metrics in all cases evaluated, particularly in cross-dataset experiments. With the proposed SOTA methods, all the evaluated metrics (accuracy and F1-Score) consistently surpass 90% in all cases, while the MoG+SVM method can decrease the performance under 80%. This demonstrates the relevance of the analysis proposed here for flow regime classification literature and opens up a new set of possibilities for research in this area, aiming at robust solutions that are viable for practical use.
id UTFPR-12_5e6a7e37486539f45c8ca2b481a4da49
oai_identifier_str oai:repositorio.utfpr.edu.br:1/36002
network_acronym_str UTFPR-12
network_name_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
repository_id_str
spelling Advancements in two-phase flow regime classification: a comparative study of machine learning and deep learning approaches using wire-mesh sensor dataAvanços na classificação de escoamentos bifásicos: um estudo comparativo de abordagens de aprendizado de máquina e aprendizado profundo usando dados de sensores Wire-MeshMáquina de vetores de suporteEscoamento bifásicoAprendizado profundo (Aprendizado do computador)Análise de séries temporaisDetectoresRedes neurais (Computação)Support vector machinesTwo-phase flowDeep learning (Machine learning)Time-series analysisSensorsNeural networks (Computer science)CNPQ::ENGENHARIAS::ENGENHARIA ELETRICAEngenharia ElétricaFlow regime classification is essential for analyzing and modeling two-phase flows, as it demarcates the flow behavior and influences the selection of appropriate predictive models. Machine learning-based approaches have gained relevance in flow regime classification research in the last few years. However, they are still solidly based on the construction and careful definition of hand-crafted features. Deep learning approaches, on the other hand, can provide more robust and end-to-end solutions. However, they are underexplored and have not evaluated the generalization of the models to other data or acquisition systems. In this thesis, we compare two different approaches for classifying flow patterns (churn, bubbly, and slug) using time series of void fraction from a wire-mesh sensor. In the first, defined as MoG+SVM, the time series is modeled as a stochastic process of independent and identically distributed samples with probability density function described by a Mixture of Gaussian (MoG) model. The estimated parameters of the mixture are then fed into a Support Vector Machine (SVM), yielding the flow pattern classification. The second, defined as SOTA-DL, we propose using end-to-end state-of-the-art (SOTA) time-series classification methods (ResNet, LSTM-FCN, and TSTPlus) for two-phase flow patterns. We also present the generalization analysis of the models with cross-dataset experiments, training the model with one dataset and testing it with another dataset collected in another system for two datasets, here defined as HZDR and TUD. The results demonstrate that the deep learning-based approach (SOTA-DL) presents superior classification metrics in all cases evaluated, particularly in cross-dataset experiments. With the proposed SOTA methods, all the evaluated metrics (accuracy and F1-Score) consistently surpass 90% in all cases, while the MoG+SVM method can decrease the performance under 80%. This demonstrates the relevance of the analysis proposed here for flow regime classification literature and opens up a new set of possibilities for research in this area, aiming at robust solutions that are viable for practical use.A classificação do regime de escoamento é essencial para analisar e modelar escoamentos bifásicos, pois demarca o comportamento do escoamento e influencia a seleção de modelos preditivos apropriados. Abordagens baseadas em aprendizado de máquina ganharam relevância na pesquisa de classificação de regime de escoamento nos últimos anos. No entanto, elas ainda são solidamente baseadas na construção e definição cuidadosa de características. Abordagens de aprendizado profundo, por outro lado, podem fornecer soluções mais robustas e completas. No entanto, elas são pouco exploradas e não avaliaram a generalização dos modelos para outros dados ou sistemas de aquisição. Nesta tese, comparamos duas abordagens diferentes para classificar padrões de escoamento (agitação, bolhas e slug) usando séries temporais de fração de vazio de um sensor wire-mesh. Na primeira abordagem, definida como MdG+MVS, a série temporal é modelada como um processo estocástico de amostras independentes e distribuídas de forma idêntica com função de densidade de probabilidade descrita por um modelo de mistura gaussiana (MdG). Os parâmetros estimados da mistura são então alimentados em uma Máquina de Vetor de Suporte (MVS), produzindo a classificação do padrão de escoamento. Na segunda, definida como EDA-AP, propomos usar métodos de classificação de séries temporais de baseados em aprendizado profundo (ResNet, LSTM-FCN e TSTPlus) para padrões de escoamento de duas fases. Também apresentamos a análise de generalização dos modelos com experimentos entre conjuntos de dados, treinando o modelo com um conjunto de dados e testando-o com outro conjunto de dados coletados em outro sistema para dois conjuntos de dados, aqui definidos como HZDR e TUD. Os resultados demonstram que a abordagem baseada em aprendizado profundo (EDA-AP) apresenta métricas de classificação superiores em todos os casos avaliados, particularmente em experimentos entre conjuntos de dados. Com os métodos propostos, todas as métricas avaliadas (precisão e F1-Score) consistentemente ultrapassam 90% em todos os casos, enquanto o método MdG+MVS pode diminuir o desempenho abaixo de 80%. Isso demonstra a relevância da análise proposta aqui para a literatura de classificação de regime de escoamento e abre um novo conjunto de possibilidades para pesquisa nesta área, visando soluções robustas que sejam viáveis para uso prático.Universidade Tecnológica Federal do ParanáCuritibaBrasilPrograma de Pós-Graduação em Engenharia Elétrica e Informática IndustrialUTFPRLazzaretti, André Eugêniohttps://orcid.org/0000-0003-1861-3369http://lattes.cnpq.br/7649611874688878Silva, Marco Jose dahttps://orcid.org/0000-0003-1955-8293http://lattes.cnpq.br/3660493864159835Fabro, Adriano Todorovichttps://orcid.org/0000-0003-1400-2755http://lattes.cnpq.br/1950124242747561Pipa, Daniel Rodrigueshttps://orcid.org/0000-0002-9398-332Xhttp://lattes.cnpq.br/5604517186200940Aguiar, Everton Luiz dehttps://orcid.org/0000-0002-8183-5426http://lattes.cnpq.br/1125511740841891Silva, Marco Jose dahttps://orcid.org/0000-0003-1955-8293http://lattes.cnpq.br/3660493864159835Melo, Sílvio de Barroshttps://orcid.org/0000-0001-8600-6427http://lattes.cnpq.br/3847692220708299Ambrosio, Jefferson dos Santos2025-02-18T20:11:02Z2025-02-18T20:11:02Z2024-12-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfAMBROSIO, Jefferson dos Santos. Advancements in two-phase flow regime classification: a comparative study of machine learning and deep learning approaches using wire-mesh sensor data. 2025. Tese (Doutorado em Engenharia Elétrica e Informática Industrial) - Universidade Tecnológica Federal do Paraná, Curitiba, 2024.http://repositorio.utfpr.edu.br/jspui/handle/1/36002enghttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))instname:Universidade Tecnológica Federal do Paraná (UTFPR)instacron:UTFPR2025-02-19T06:09:53Zoai:repositorio.utfpr.edu.br:1/36002Repositório InstitucionalPUBhttp://repositorio.utfpr.edu.br:8080/oai/requestriut@utfpr.edu.br || sibi@utfpr.edu.bropendoar:2025-02-19T06:09:53Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)false
dc.title.none.fl_str_mv Advancements in two-phase flow regime classification: a comparative study of machine learning and deep learning approaches using wire-mesh sensor data
Avanços na classificação de escoamentos bifásicos: um estudo comparativo de abordagens de aprendizado de máquina e aprendizado profundo usando dados de sensores Wire-Mesh
title Advancements in two-phase flow regime classification: a comparative study of machine learning and deep learning approaches using wire-mesh sensor data
spellingShingle Advancements in two-phase flow regime classification: a comparative study of machine learning and deep learning approaches using wire-mesh sensor data
Ambrosio, Jefferson dos Santos
Máquina de vetores de suporte
Escoamento bifásico
Aprendizado profundo (Aprendizado do computador)
Análise de séries temporais
Detectores
Redes neurais (Computação)
Support vector machines
Two-phase flow
Deep learning (Machine learning)
Time-series analysis
Sensors
Neural networks (Computer science)
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
Engenharia Elétrica
title_short Advancements in two-phase flow regime classification: a comparative study of machine learning and deep learning approaches using wire-mesh sensor data
title_full Advancements in two-phase flow regime classification: a comparative study of machine learning and deep learning approaches using wire-mesh sensor data
title_fullStr Advancements in two-phase flow regime classification: a comparative study of machine learning and deep learning approaches using wire-mesh sensor data
title_full_unstemmed Advancements in two-phase flow regime classification: a comparative study of machine learning and deep learning approaches using wire-mesh sensor data
title_sort Advancements in two-phase flow regime classification: a comparative study of machine learning and deep learning approaches using wire-mesh sensor data
author Ambrosio, Jefferson dos Santos
author_facet Ambrosio, Jefferson dos Santos
author_role author
dc.contributor.none.fl_str_mv Lazzaretti, André Eugênio
https://orcid.org/0000-0003-1861-3369
http://lattes.cnpq.br/7649611874688878
Silva, Marco Jose da
https://orcid.org/0000-0003-1955-8293
http://lattes.cnpq.br/3660493864159835
Fabro, Adriano Todorovic
https://orcid.org/0000-0003-1400-2755
http://lattes.cnpq.br/1950124242747561
Pipa, Daniel Rodrigues
https://orcid.org/0000-0002-9398-332X
http://lattes.cnpq.br/5604517186200940
Aguiar, Everton Luiz de
https://orcid.org/0000-0002-8183-5426
http://lattes.cnpq.br/1125511740841891
Silva, Marco Jose da
https://orcid.org/0000-0003-1955-8293
http://lattes.cnpq.br/3660493864159835
Melo, Sílvio de Barros
https://orcid.org/0000-0001-8600-6427
http://lattes.cnpq.br/3847692220708299
dc.contributor.author.fl_str_mv Ambrosio, Jefferson dos Santos
dc.subject.por.fl_str_mv Máquina de vetores de suporte
Escoamento bifásico
Aprendizado profundo (Aprendizado do computador)
Análise de séries temporais
Detectores
Redes neurais (Computação)
Support vector machines
Two-phase flow
Deep learning (Machine learning)
Time-series analysis
Sensors
Neural networks (Computer science)
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
Engenharia Elétrica
topic Máquina de vetores de suporte
Escoamento bifásico
Aprendizado profundo (Aprendizado do computador)
Análise de séries temporais
Detectores
Redes neurais (Computação)
Support vector machines
Two-phase flow
Deep learning (Machine learning)
Time-series analysis
Sensors
Neural networks (Computer science)
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
Engenharia Elétrica
description Flow regime classification is essential for analyzing and modeling two-phase flows, as it demarcates the flow behavior and influences the selection of appropriate predictive models. Machine learning-based approaches have gained relevance in flow regime classification research in the last few years. However, they are still solidly based on the construction and careful definition of hand-crafted features. Deep learning approaches, on the other hand, can provide more robust and end-to-end solutions. However, they are underexplored and have not evaluated the generalization of the models to other data or acquisition systems. In this thesis, we compare two different approaches for classifying flow patterns (churn, bubbly, and slug) using time series of void fraction from a wire-mesh sensor. In the first, defined as MoG+SVM, the time series is modeled as a stochastic process of independent and identically distributed samples with probability density function described by a Mixture of Gaussian (MoG) model. The estimated parameters of the mixture are then fed into a Support Vector Machine (SVM), yielding the flow pattern classification. The second, defined as SOTA-DL, we propose using end-to-end state-of-the-art (SOTA) time-series classification methods (ResNet, LSTM-FCN, and TSTPlus) for two-phase flow patterns. We also present the generalization analysis of the models with cross-dataset experiments, training the model with one dataset and testing it with another dataset collected in another system for two datasets, here defined as HZDR and TUD. The results demonstrate that the deep learning-based approach (SOTA-DL) presents superior classification metrics in all cases evaluated, particularly in cross-dataset experiments. With the proposed SOTA methods, all the evaluated metrics (accuracy and F1-Score) consistently surpass 90% in all cases, while the MoG+SVM method can decrease the performance under 80%. This demonstrates the relevance of the analysis proposed here for flow regime classification literature and opens up a new set of possibilities for research in this area, aiming at robust solutions that are viable for practical use.
publishDate 2024
dc.date.none.fl_str_mv 2024-12-16
2025-02-18T20:11:02Z
2025-02-18T20:11:02Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv AMBROSIO, Jefferson dos Santos. Advancements in two-phase flow regime classification: a comparative study of machine learning and deep learning approaches using wire-mesh sensor data. 2025. Tese (Doutorado em Engenharia Elétrica e Informática Industrial) - Universidade Tecnológica Federal do Paraná, Curitiba, 2024.
http://repositorio.utfpr.edu.br/jspui/handle/1/36002
identifier_str_mv AMBROSIO, Jefferson dos Santos. Advancements in two-phase flow regime classification: a comparative study of machine learning and deep learning approaches using wire-mesh sensor data. 2025. Tese (Doutorado em Engenharia Elétrica e Informática Industrial) - Universidade Tecnológica Federal do Paraná, Curitiba, 2024.
url http://repositorio.utfpr.edu.br/jspui/handle/1/36002
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Tecnológica Federal do Paraná
Curitiba
Brasil
Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial
UTFPR
publisher.none.fl_str_mv Universidade Tecnológica Federal do Paraná
Curitiba
Brasil
Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial
UTFPR
dc.source.none.fl_str_mv reponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
instname:Universidade Tecnológica Federal do Paraná (UTFPR)
instacron:UTFPR
instname_str Universidade Tecnológica Federal do Paraná (UTFPR)
instacron_str UTFPR
institution UTFPR
reponame_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
collection Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
repository.name.fl_str_mv Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)
repository.mail.fl_str_mv riut@utfpr.edu.br || sibi@utfpr.edu.br
_version_ 1850498276905713664