Sistema adaptativo para teleoperação de basemóvel através de reconhecimentos gestuais

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Martinelli, Dieisson
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Curitiba
Brasil
Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial
UTFPR
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/28785
Resumo: Teleoperated robots are generally used for operations in environments that are difficult to access or in places where the lives of operators are at risk. A teleoperation system uses motion interface approaches that allow remote commands to be sent to the robotic mobile base. These teleoperation methods seek to achieve aspects of stability and telepresence. However, these traditional equipment use specific components and often attached to the operator’s body, which can make it difficult to move and teleoperate, in addition to making it difficult to leave the place in case of danger. In this sense, this dissertation aims to present the development of an adaptive and intuitive system for teleoperation of a mobile base coupled with a robotic arm with three degrees of freedom. To develop this system, technologies for detecting key points of the human body are presented through deep learning techniques extracted through an RGB image. These techniques were used during the development of this work in other researches for the area of teleoperation that culminated in the technology used for this work. This work makes an approach of the entire structure of equipment, sensors, adaptations carried out in the Beckman Coulter ORCA, being a robotic manipulator of three degrees of freedom, as well as all the ROS (Robot Operating System) packages of communication developed for the application and accomplishment of the experiments. This project uses the holistic pipeline of the MediaPipe framework to capture 2D points of the operator’s body position through the images and two algorithms are developed through this framework. The first algorithm is responsible for extracting characteristics from the operator performing the requested movement to execute a given movement process.These features are used to train an SVM (Support Vector Machine) classifier, where each gesture is linked to a movement class. The second algorithm is responsible for using the data collected from the operator’s body at process time and identifying, through classification, the movement requested by the operator. After classifying the movement, the position of the key point is calculated, which, through techniques proposed by the algorithm of this work, results in a value from 0 to 100 of activation of the required movement. This value passes through a Fuzzy control system, which outputs the robot’s movement. The tests are carried out with 20 volunteer operators in order to follow a trajectory and collect/deliver an object. The evaluation of the proposed teleoperation system is carried out through experimentation in a simulated environment.Experiments were conducted to show the benefits of the proposed solutions.
id UTFPR-12_8b20580b1ab00dffb1adf0207d272331
oai_identifier_str oai:repositorio.utfpr.edu.br:1/28785
network_acronym_str UTFPR-12
network_name_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
repository_id_str
spelling Sistema adaptativo para teleoperação de basemóvel através de reconhecimentos gestuaisAdaptative system for teleoperation of a mobile base through gestural recognitionRobôs móveisSistemas de reconhecimento de padrõesAlgorítmos - DesenvolvimentoSistemas de controle ajustávelSistemas de controle supervisórioMobile robotsPattern recognition systemsAlgorithms - DevelopmentAdaptive control systemsSupervisory control systemsCNPQ::ENGENHARIAS::ENGENHARIA ELETRICA::ELETRONICA INDUSTRIAL, SISTEMAS E CONTROLES ELETRONICOS::AUTOMACAO ELETRONICA DE PROCESSOS ELETRICOS E INDUSTRIAISEngenharia ElétricaTeleoperated robots are generally used for operations in environments that are difficult to access or in places where the lives of operators are at risk. A teleoperation system uses motion interface approaches that allow remote commands to be sent to the robotic mobile base. These teleoperation methods seek to achieve aspects of stability and telepresence. However, these traditional equipment use specific components and often attached to the operator’s body, which can make it difficult to move and teleoperate, in addition to making it difficult to leave the place in case of danger. In this sense, this dissertation aims to present the development of an adaptive and intuitive system for teleoperation of a mobile base coupled with a robotic arm with three degrees of freedom. To develop this system, technologies for detecting key points of the human body are presented through deep learning techniques extracted through an RGB image. These techniques were used during the development of this work in other researches for the area of teleoperation that culminated in the technology used for this work. This work makes an approach of the entire structure of equipment, sensors, adaptations carried out in the Beckman Coulter ORCA, being a robotic manipulator of three degrees of freedom, as well as all the ROS (Robot Operating System) packages of communication developed for the application and accomplishment of the experiments. This project uses the holistic pipeline of the MediaPipe framework to capture 2D points of the operator’s body position through the images and two algorithms are developed through this framework. The first algorithm is responsible for extracting characteristics from the operator performing the requested movement to execute a given movement process.These features are used to train an SVM (Support Vector Machine) classifier, where each gesture is linked to a movement class. The second algorithm is responsible for using the data collected from the operator’s body at process time and identifying, through classification, the movement requested by the operator. After classifying the movement, the position of the key point is calculated, which, through techniques proposed by the algorithm of this work, results in a value from 0 to 100 of activation of the required movement. This value passes through a Fuzzy control system, which outputs the robot’s movement. The tests are carried out with 20 volunteer operators in order to follow a trajectory and collect/deliver an object. The evaluation of the proposed teleoperation system is carried out through experimentation in a simulated environment.Experiments were conducted to show the benefits of the proposed solutions.Robôs teleoperados são geralmente utilizados para operações em ambientes de difícil acesso ou em locais de risco a vida de operadores. Um sistema de teleoperação usa abordagens de interface de movimentação que permitem o envio de comandos a distância para a base móvel robótica. Esses métodos de teleoperação buscam atingir os aspectos de estabilidade e a telepresença. Porém, estes equipamentos tradicionais utilizam de componentes específicos e muitas vezes presos ao corpo do operador, podendo dificultar sua locomoção e teleoperação, além de dificultar sua saída do local em caso de perigo. Neste sentido, essa dissertação tem como finalidade apresentar o desenvolvimento de um sistema adaptativo e intuitivo para teleoperação de uma base móvel acoplado com um braço robótico de três graus de liberdade. Para desenvolver este sistema é apresentado tecnologias de detecção de pose através de técnicas de deep learning extraídas através de uma imagem RGB. Estas técnicas foram utilizadas durante o desenvolvimento deste trabalho em outras pesquisas para a área de teleoperação que culminaram na tecnologia utilizada para este trabalho. Este trabalho faz uma abordagem de toda a estrutura de equipamentos, sensores, adaptações realizadas no Beckman Coulter ORCA, sendo um manipulador robótico de três graus de liberdade, bem como todos os pacotes ROS (Robot Operating System) de comunicação desenvolvido para a aplicação e realização dos experimentos. Este projeto utiliza a pipeline holistic do framework MediaPipe para capturar pontos 2D da posição do corpo do operador através das imagens e dois algoritmos são desenvolvidos através desta framework. O primeiro algoritmo é responsável pela extração de características do operador efetuando o movimento solicitado para executar determinado processo de movimentação. Estas características são utilizadas para o treinamento de um classificador SVM (Support Vector Machine), onde cada gesto é vinculado a uma classe de movimento. O segundo algoritmo é responsável por utilizar os dados coletados do corpo do operador em tempo de processo e identificar, através da classificação, o movimento solicitado pelo operador. Após a classificação do movimento é realizado o cálculo da posição do ponto-chave, que através de técnicas propostas pelo algoritmo deste trabalho resulta em um valor de 0 a 100 de ativação do movimento requerido. Este valor passa por um sistema de controle Fuzzy, que terá como saída o movimento do robô. Os testes são realizados com 20 operadores voluntários com o objetivo de seguir uma trajetória e coletar/entregar um objeto. A avaliação do sistema de teleoperação proposto é realizada por meio de experimentação em um ambiente simulado. Experimentos foram conduzidos para mostrar os benefícios das soluções propostas.Universidade Tecnológica Federal do ParanáCuritibaBrasilPrograma de Pós-Graduação em Engenharia Elétrica e Informática IndustrialUTFPROliveira, Andre Schneider dehttps://orcid.org/0000-0002-8295-366Xhttp://lattes.cnpq.br/4006878042502781Fabro, Joao Albertohttps://orcid.org/0000-0001-8975-0323http://lattes.cnpq.br/6841185662777161Cantieri, Alvaro Rogériohttps://orcid.org/0000-0001-5930-2140http://lattes.cnpq.br/4333084376041709Oliveira, Andre Schneider dehttps://orcid.org/0000-0002-8295-366Xhttp://lattes.cnpq.br/4006878042502781Kalempa, Vivian Cremerhttps://orcid.org/0000-0001-9733-7352http://lattes.cnpq.br/4947441615404492Martinelli, Dieisson2022-06-10T12:18:57Z2022-06-10T12:18:57Z2022-05-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfMARTINELLI, Dieisson. Sistema adaptativo para teleoperação de base móvel através de reconhecimentos gestuais. 2022. Dissertação (Mestrado em Engenharia Elétrica e Informática Industrial) - Universidade Tecnológica Federal do Paraná, Curitiba, 2022.http://repositorio.utfpr.edu.br/jspui/handle/1/28785porhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))instname:Universidade Tecnológica Federal do Paraná (UTFPR)instacron:UTFPR2022-06-11T06:05:56Zoai:repositorio.utfpr.edu.br:1/28785Repositório InstitucionalPUBhttp://repositorio.utfpr.edu.br:8080/oai/requestriut@utfpr.edu.br || sibi@utfpr.edu.bropendoar:2022-06-11T06:05:56Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)false
dc.title.none.fl_str_mv Sistema adaptativo para teleoperação de basemóvel através de reconhecimentos gestuais
Adaptative system for teleoperation of a mobile base through gestural recognition
title Sistema adaptativo para teleoperação de basemóvel através de reconhecimentos gestuais
spellingShingle Sistema adaptativo para teleoperação de basemóvel através de reconhecimentos gestuais
Martinelli, Dieisson
Robôs móveis
Sistemas de reconhecimento de padrões
Algorítmos - Desenvolvimento
Sistemas de controle ajustável
Sistemas de controle supervisório
Mobile robots
Pattern recognition systems
Algorithms - Development
Adaptive control systems
Supervisory control systems
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA::ELETRONICA INDUSTRIAL, SISTEMAS E CONTROLES ELETRONICOS::AUTOMACAO ELETRONICA DE PROCESSOS ELETRICOS E INDUSTRIAIS
Engenharia Elétrica
title_short Sistema adaptativo para teleoperação de basemóvel através de reconhecimentos gestuais
title_full Sistema adaptativo para teleoperação de basemóvel através de reconhecimentos gestuais
title_fullStr Sistema adaptativo para teleoperação de basemóvel através de reconhecimentos gestuais
title_full_unstemmed Sistema adaptativo para teleoperação de basemóvel através de reconhecimentos gestuais
title_sort Sistema adaptativo para teleoperação de basemóvel através de reconhecimentos gestuais
author Martinelli, Dieisson
author_facet Martinelli, Dieisson
author_role author
dc.contributor.none.fl_str_mv Oliveira, Andre Schneider de
https://orcid.org/0000-0002-8295-366X
http://lattes.cnpq.br/4006878042502781
Fabro, Joao Alberto
https://orcid.org/0000-0001-8975-0323
http://lattes.cnpq.br/6841185662777161
Cantieri, Alvaro Rogério
https://orcid.org/0000-0001-5930-2140
http://lattes.cnpq.br/4333084376041709
Oliveira, Andre Schneider de
https://orcid.org/0000-0002-8295-366X
http://lattes.cnpq.br/4006878042502781
Kalempa, Vivian Cremer
https://orcid.org/0000-0001-9733-7352
http://lattes.cnpq.br/4947441615404492
dc.contributor.author.fl_str_mv Martinelli, Dieisson
dc.subject.por.fl_str_mv Robôs móveis
Sistemas de reconhecimento de padrões
Algorítmos - Desenvolvimento
Sistemas de controle ajustável
Sistemas de controle supervisório
Mobile robots
Pattern recognition systems
Algorithms - Development
Adaptive control systems
Supervisory control systems
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA::ELETRONICA INDUSTRIAL, SISTEMAS E CONTROLES ELETRONICOS::AUTOMACAO ELETRONICA DE PROCESSOS ELETRICOS E INDUSTRIAIS
Engenharia Elétrica
topic Robôs móveis
Sistemas de reconhecimento de padrões
Algorítmos - Desenvolvimento
Sistemas de controle ajustável
Sistemas de controle supervisório
Mobile robots
Pattern recognition systems
Algorithms - Development
Adaptive control systems
Supervisory control systems
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA::ELETRONICA INDUSTRIAL, SISTEMAS E CONTROLES ELETRONICOS::AUTOMACAO ELETRONICA DE PROCESSOS ELETRICOS E INDUSTRIAIS
Engenharia Elétrica
description Teleoperated robots are generally used for operations in environments that are difficult to access or in places where the lives of operators are at risk. A teleoperation system uses motion interface approaches that allow remote commands to be sent to the robotic mobile base. These teleoperation methods seek to achieve aspects of stability and telepresence. However, these traditional equipment use specific components and often attached to the operator’s body, which can make it difficult to move and teleoperate, in addition to making it difficult to leave the place in case of danger. In this sense, this dissertation aims to present the development of an adaptive and intuitive system for teleoperation of a mobile base coupled with a robotic arm with three degrees of freedom. To develop this system, technologies for detecting key points of the human body are presented through deep learning techniques extracted through an RGB image. These techniques were used during the development of this work in other researches for the area of teleoperation that culminated in the technology used for this work. This work makes an approach of the entire structure of equipment, sensors, adaptations carried out in the Beckman Coulter ORCA, being a robotic manipulator of three degrees of freedom, as well as all the ROS (Robot Operating System) packages of communication developed for the application and accomplishment of the experiments. This project uses the holistic pipeline of the MediaPipe framework to capture 2D points of the operator’s body position through the images and two algorithms are developed through this framework. The first algorithm is responsible for extracting characteristics from the operator performing the requested movement to execute a given movement process.These features are used to train an SVM (Support Vector Machine) classifier, where each gesture is linked to a movement class. The second algorithm is responsible for using the data collected from the operator’s body at process time and identifying, through classification, the movement requested by the operator. After classifying the movement, the position of the key point is calculated, which, through techniques proposed by the algorithm of this work, results in a value from 0 to 100 of activation of the required movement. This value passes through a Fuzzy control system, which outputs the robot’s movement. The tests are carried out with 20 volunteer operators in order to follow a trajectory and collect/deliver an object. The evaluation of the proposed teleoperation system is carried out through experimentation in a simulated environment.Experiments were conducted to show the benefits of the proposed solutions.
publishDate 2022
dc.date.none.fl_str_mv 2022-06-10T12:18:57Z
2022-06-10T12:18:57Z
2022-05-06
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv MARTINELLI, Dieisson. Sistema adaptativo para teleoperação de base móvel através de reconhecimentos gestuais. 2022. Dissertação (Mestrado em Engenharia Elétrica e Informática Industrial) - Universidade Tecnológica Federal do Paraná, Curitiba, 2022.
http://repositorio.utfpr.edu.br/jspui/handle/1/28785
identifier_str_mv MARTINELLI, Dieisson. Sistema adaptativo para teleoperação de base móvel através de reconhecimentos gestuais. 2022. Dissertação (Mestrado em Engenharia Elétrica e Informática Industrial) - Universidade Tecnológica Federal do Paraná, Curitiba, 2022.
url http://repositorio.utfpr.edu.br/jspui/handle/1/28785
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Tecnológica Federal do Paraná
Curitiba
Brasil
Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial
UTFPR
publisher.none.fl_str_mv Universidade Tecnológica Federal do Paraná
Curitiba
Brasil
Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial
UTFPR
dc.source.none.fl_str_mv reponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
instname:Universidade Tecnológica Federal do Paraná (UTFPR)
instacron:UTFPR
instname_str Universidade Tecnológica Federal do Paraná (UTFPR)
instacron_str UTFPR
institution UTFPR
reponame_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
collection Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
repository.name.fl_str_mv Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)
repository.mail.fl_str_mv riut@utfpr.edu.br || sibi@utfpr.edu.br
_version_ 1850498320860971008