Exportação concluída — 

Design and development of a voice assistant for automotive dashboard control

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Luz, Mathias Rodrigues da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Ponta Grossa
Brasil
Programa de Pós-Graduação em Engenharia Elétrica
UTFPR
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/30512
Resumo: To obtain a national driver’s license, Brazilian drivers undergo physical and mental aptitude tests to prove they are qualified to operate a vehicle. However, people who are not in full physical capacity, called Persons with Reduced Mobility, do not have the same freedom to move around due to their limitations. They face difficulties with urban mobility, becoming dependent on public transportation or ride-hailing apps. Another alternative is using specially adapted vehicles, but even these vehicles do not meet all their needs. With the advent of new speech recognition technologies and advanced driver assistance systems, new systems that control the vehicle by voice commands have emerged, acting on multimedia functions or climate control, for example. Thus, this work proposes to develop an embedded system to assist the driver in vehicle conduction using speech recognition and focuses on creating a prototype to evaluate the system’s usability by a Proof of Concept. The V-model of software development was used as the basis of the methodology to create a voice assistant capable of recognizing four commands (right turn signal, left turn signal, hazard warning, and headlights) and controlling the respective functions of the vehicle. The recognition of voice commands was done using a three-step verification that applied artificial intelligence techniques such as neural networks and deep learning. This work also describes the creation of a database of Brazilian Portuguese voice commands for training speech recognition models through Transfer Learning. Besides recognizing the voice commands, the assistant can identify the driver by voice and verify the similarity of the voice command with the driver’s voice. The developed system met all the requirements established in the design stage and correctly recognized 98.4% of the explored cases without noise. In the other cases, no commands were recognized, which is considered better than recognizing another command since this would result in the actuation of an undesired function. Furthermore, the developed prototype was tested in a vehicle in six real driving scenarios, with the sound noise being monitored. The system worked perfectly up to an average of 73.8 dB, which corresponds to the characteristic sound level inside moving vehicles. The processing time for the voice commands was approximately 1 second.
id UTFPR-12_8ebb2e1d3b859094b3b6614cdd42fb13
oai_identifier_str oai:repositorio.utfpr.edu.br:1/30512
network_acronym_str UTFPR-12
network_name_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
repository_id_str
spelling Design and development of a voice assistant for automotive dashboard controlProjeto e desenvolvimento de assistente de voz para controle de painel de instrumentos automotivoReconhecimento automático da vozSistemas de reconhecimento de padrõesSistemas embarcados (Computadores)Segurança no trânsitoMotoristasAutomatic speech recognitionPattern recognition systemsEmbedded computer systemsTraffic safetyMotor vehicle driversCNPQ::ENGENHARIAS::ENGENHARIA ELETRICAEngenharia/Tecnologia/GestãoTo obtain a national driver’s license, Brazilian drivers undergo physical and mental aptitude tests to prove they are qualified to operate a vehicle. However, people who are not in full physical capacity, called Persons with Reduced Mobility, do not have the same freedom to move around due to their limitations. They face difficulties with urban mobility, becoming dependent on public transportation or ride-hailing apps. Another alternative is using specially adapted vehicles, but even these vehicles do not meet all their needs. With the advent of new speech recognition technologies and advanced driver assistance systems, new systems that control the vehicle by voice commands have emerged, acting on multimedia functions or climate control, for example. Thus, this work proposes to develop an embedded system to assist the driver in vehicle conduction using speech recognition and focuses on creating a prototype to evaluate the system’s usability by a Proof of Concept. The V-model of software development was used as the basis of the methodology to create a voice assistant capable of recognizing four commands (right turn signal, left turn signal, hazard warning, and headlights) and controlling the respective functions of the vehicle. The recognition of voice commands was done using a three-step verification that applied artificial intelligence techniques such as neural networks and deep learning. This work also describes the creation of a database of Brazilian Portuguese voice commands for training speech recognition models through Transfer Learning. Besides recognizing the voice commands, the assistant can identify the driver by voice and verify the similarity of the voice command with the driver’s voice. The developed system met all the requirements established in the design stage and correctly recognized 98.4% of the explored cases without noise. In the other cases, no commands were recognized, which is considered better than recognizing another command since this would result in the actuation of an undesired function. Furthermore, the developed prototype was tested in a vehicle in six real driving scenarios, with the sound noise being monitored. The system worked perfectly up to an average of 73.8 dB, which corresponds to the characteristic sound level inside moving vehicles. The processing time for the voice commands was approximately 1 second.Fundação Araucária de Apoio ao Desenvolvimento Científico e Tecnológico do ParanáFundação de Apoio à Educação, Pesquisa e Desenvolvimento Científico e Tecnológico da Universidade Tecnológica Federal do Paraná (FUNTEF-PR)Para obter a carteira nacional de habilitação, os motoristas brasileiros passam por exames de aptidão física e mental, de modo a comprovar que são capacitados para operar um veículo. Entretanto, as pessoas que não estão em plenas capacidades físicas, denominadas Pessoas com Mobilidade Reduzida, não possuem a mesma liberdade para se locomover devido as suas limitações. Eles enfrentam dificuldades com a mobilidade urbana, ficando dependentes do transporte público ou por aplicativos. Outra alternativa é o uso de veículos especialmente adaptados, porém até mesmo esses veículos não suprem todas as suas necessidades. Com o advento de novas tecnologias de reconhecimento de voz e de sistemas avançados de assistência ao motorista, surgiram sistemas que permitem controlar o veículo por comandos de voz, que atuam em funções multimídia ou controle climático, por exemplo. Sendo assim, este trabalho propõe desenvolver um sistema embarcado para auxiliar o motorista na condução do veículo usando reconhecimento de fala e foca em criar um protótipo para avaliar a usabilidade do sistema por uma Prova de Conceito. O modelo V de desenvolvimento de software foi utilizado como base da metodologia para a criação de um assistente de voz capaz de reconhecer quatro comandos (seta para direita, seta para esquerda, pisca alerta e luz baixa) e controlar as respectivas funções do veículo. O reconhecimento de comandos de voz foi feito utilizando uma verificação por três etapas com a aplicação de técnicas de inteligência artificial como redes neurais e aprendizado profundo. Este trabalho também descreve a criação de um banco de dados com comandos de voz em Português Brasileiro para treinamento de modelos de reconhecimento de fala, por meio de Transferência de Aprendizado. Além de reconhecer os comandos de voz, o assistente é capaz de identificar o motorista pela voz e verificar a similaridade dos comandos com a voz do motorista. O sistema desenvolvido atendeu a todos os requisitos estabelecidos na etapa de projeto, e reconheceu corretamente 98.4% dos casos explorados, sem ruídos. Nos demais casos, nenhum comando foi reconhecido, o que é considerado melhor que o reconhecimento de outro comando, visto que isto acarretaria na atuação de uma função indesejada. Além disso, o protótipo desenvolvido foi testado em um veículo em seis situações reais de direção, com o ruído sonoro sendo monitorado. O sistema funcionou perfeitamente até uma média de 73.8 dB, que corresponde ao nível sonoro característico dentro de veículos em movimento. O tempo de processamento dos comandos de voz foi de aproximadamente 1 segundo.Universidade Tecnológica Federal do ParanáPonta GrossaBrasilPrograma de Pós-Graduação em Engenharia ElétricaUTFPRSantos, Max Mauro Diashttps://orcid.org/0000-0001-7877-3554http://lattes.cnpq.br/6212006974231025Yoshino, Rui Tadashihttps://orcid.org/0000-0002-7267-4464http://lattes.cnpq.br/1374012206166960Santos, Max Mauro Diashttps://orcid.org/0000-0001-7877-3554http://lattes.cnpq.br/6212006974231025Teixeira, Evandro Leonardo Silvahttps://orcid.org/0000-0002-4781-6782http://lattes.cnpq.br/4978036208480917Corrêa, Fernanda Cristinahttps://orcid.org/0000-0003-4907-0395http://lattes.cnpq.br/1495216809511536Luz, Mathias Rodrigues da2023-02-06T12:44:14Z2023-02-06T12:44:14Z2022-12-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfLUZ, Mathias Rodrigues da. Design and development of a voice assistant for automotive dashboard control. 2022. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Tecnológica Federal do Paraná, Ponta Grossa, 2022.http://repositorio.utfpr.edu.br/jspui/handle/1/30512enghttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))instname:Universidade Tecnológica Federal do Paraná (UTFPR)instacron:UTFPR2023-02-07T06:07:07Zoai:repositorio.utfpr.edu.br:1/30512Repositório InstitucionalPUBhttp://repositorio.utfpr.edu.br:8080/oai/requestriut@utfpr.edu.br || sibi@utfpr.edu.bropendoar:2023-02-07T06:07:07Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)false
dc.title.none.fl_str_mv Design and development of a voice assistant for automotive dashboard control
Projeto e desenvolvimento de assistente de voz para controle de painel de instrumentos automotivo
title Design and development of a voice assistant for automotive dashboard control
spellingShingle Design and development of a voice assistant for automotive dashboard control
Luz, Mathias Rodrigues da
Reconhecimento automático da voz
Sistemas de reconhecimento de padrões
Sistemas embarcados (Computadores)
Segurança no trânsito
Motoristas
Automatic speech recognition
Pattern recognition systems
Embedded computer systems
Traffic safety
Motor vehicle drivers
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
Engenharia/Tecnologia/Gestão
title_short Design and development of a voice assistant for automotive dashboard control
title_full Design and development of a voice assistant for automotive dashboard control
title_fullStr Design and development of a voice assistant for automotive dashboard control
title_full_unstemmed Design and development of a voice assistant for automotive dashboard control
title_sort Design and development of a voice assistant for automotive dashboard control
author Luz, Mathias Rodrigues da
author_facet Luz, Mathias Rodrigues da
author_role author
dc.contributor.none.fl_str_mv Santos, Max Mauro Dias
https://orcid.org/0000-0001-7877-3554
http://lattes.cnpq.br/6212006974231025
Yoshino, Rui Tadashi
https://orcid.org/0000-0002-7267-4464
http://lattes.cnpq.br/1374012206166960
Santos, Max Mauro Dias
https://orcid.org/0000-0001-7877-3554
http://lattes.cnpq.br/6212006974231025
Teixeira, Evandro Leonardo Silva
https://orcid.org/0000-0002-4781-6782
http://lattes.cnpq.br/4978036208480917
Corrêa, Fernanda Cristina
https://orcid.org/0000-0003-4907-0395
http://lattes.cnpq.br/1495216809511536
dc.contributor.author.fl_str_mv Luz, Mathias Rodrigues da
dc.subject.por.fl_str_mv Reconhecimento automático da voz
Sistemas de reconhecimento de padrões
Sistemas embarcados (Computadores)
Segurança no trânsito
Motoristas
Automatic speech recognition
Pattern recognition systems
Embedded computer systems
Traffic safety
Motor vehicle drivers
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
Engenharia/Tecnologia/Gestão
topic Reconhecimento automático da voz
Sistemas de reconhecimento de padrões
Sistemas embarcados (Computadores)
Segurança no trânsito
Motoristas
Automatic speech recognition
Pattern recognition systems
Embedded computer systems
Traffic safety
Motor vehicle drivers
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
Engenharia/Tecnologia/Gestão
description To obtain a national driver’s license, Brazilian drivers undergo physical and mental aptitude tests to prove they are qualified to operate a vehicle. However, people who are not in full physical capacity, called Persons with Reduced Mobility, do not have the same freedom to move around due to their limitations. They face difficulties with urban mobility, becoming dependent on public transportation or ride-hailing apps. Another alternative is using specially adapted vehicles, but even these vehicles do not meet all their needs. With the advent of new speech recognition technologies and advanced driver assistance systems, new systems that control the vehicle by voice commands have emerged, acting on multimedia functions or climate control, for example. Thus, this work proposes to develop an embedded system to assist the driver in vehicle conduction using speech recognition and focuses on creating a prototype to evaluate the system’s usability by a Proof of Concept. The V-model of software development was used as the basis of the methodology to create a voice assistant capable of recognizing four commands (right turn signal, left turn signal, hazard warning, and headlights) and controlling the respective functions of the vehicle. The recognition of voice commands was done using a three-step verification that applied artificial intelligence techniques such as neural networks and deep learning. This work also describes the creation of a database of Brazilian Portuguese voice commands for training speech recognition models through Transfer Learning. Besides recognizing the voice commands, the assistant can identify the driver by voice and verify the similarity of the voice command with the driver’s voice. The developed system met all the requirements established in the design stage and correctly recognized 98.4% of the explored cases without noise. In the other cases, no commands were recognized, which is considered better than recognizing another command since this would result in the actuation of an undesired function. Furthermore, the developed prototype was tested in a vehicle in six real driving scenarios, with the sound noise being monitored. The system worked perfectly up to an average of 73.8 dB, which corresponds to the characteristic sound level inside moving vehicles. The processing time for the voice commands was approximately 1 second.
publishDate 2022
dc.date.none.fl_str_mv 2022-12-21
2023-02-06T12:44:14Z
2023-02-06T12:44:14Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv LUZ, Mathias Rodrigues da. Design and development of a voice assistant for automotive dashboard control. 2022. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Tecnológica Federal do Paraná, Ponta Grossa, 2022.
http://repositorio.utfpr.edu.br/jspui/handle/1/30512
identifier_str_mv LUZ, Mathias Rodrigues da. Design and development of a voice assistant for automotive dashboard control. 2022. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Tecnológica Federal do Paraná, Ponta Grossa, 2022.
url http://repositorio.utfpr.edu.br/jspui/handle/1/30512
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Tecnológica Federal do Paraná
Ponta Grossa
Brasil
Programa de Pós-Graduação em Engenharia Elétrica
UTFPR
publisher.none.fl_str_mv Universidade Tecnológica Federal do Paraná
Ponta Grossa
Brasil
Programa de Pós-Graduação em Engenharia Elétrica
UTFPR
dc.source.none.fl_str_mv reponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
instname:Universidade Tecnológica Federal do Paraná (UTFPR)
instacron:UTFPR
instname_str Universidade Tecnológica Federal do Paraná (UTFPR)
instacron_str UTFPR
institution UTFPR
reponame_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
collection Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
repository.name.fl_str_mv Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)
repository.mail.fl_str_mv riut@utfpr.edu.br || sibi@utfpr.edu.br
_version_ 1850498257430511616