Estimativa de produtividade de soja por meio de imagens orbitais e machine learning

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Batistella, Danielli
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Pato Branco
Brasil
Programa de Pós-Graduação em Agronomia
UTFPR
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/32295
Resumo: For a soy-producing region, accurately and safely estimating the future productivity of its crops can be very strategic from a commercial point of view, because it creates security for cooperatives in producing production. In this sense, orbital Remote Sensing (RS) makes it possible to operationalize crop forecasting and monitoring programs, in addition to characterizing, in a timely manner, the phenology of crops of agronomic interest. For this purpose, Machine Learning (ML) methods have been used to better estimate the state of the crop and the environment for decision making. In this way, the general objective of this study was to improve the existing methods of belief of the agricultural production of the soybean crop through orbital images of higher spatial resolution, with reference data obtained by harvest monitors and processed through ML algorithms, in order to build more accurate yield estimation models. The study was carried out in the Regional Nucleus of Pato Branco/PR, composed of 15 municipalities. To cultivate the soybean cultivation areas, RGB spectro-temporal profiles were created from the generation of maximum and minimum NDVI (Normalized Difference Vegetation Index) and EVI (Enhanced Vegetation Index) images transmitted from the MSI sensor of the SENTINEL-2 satellite and classified by supervised method of the Random Forest (RF) algorithm in the R Studio application. To generate soybean yield estimation models, three supervised AM linear regression algorithms called RF; Support Vectors Machine (SVM) and Artificial Neural Networks (ANN) in the R-Studio app. The input data were used to generate the predictive models: the NDVI, EVI, NDMI (Normalized Difference Moisture Index) vegetation indices, both from the MSI and MODIS sensors (AQUA and TERRA) of the agricultural production areas in the region of Pato Branco -PR, precipitation data, terrain data referring to altitude, soil type, geology and slope, and actual plot production data, corresponding to the 2019/2020, 2020/2021 and 2021/2022 harvests. The predictive regression models were compared with the actual productivity of the plots used in the study. The production estimate generated for the study area was detected with official data at municipal and regional level. The NDVI index provides greater accuracy in the experience of soybean growing areas when compared to the EVI. The ML Random Forest algorithm generates a more accurate production estimation model when compared to Artificial Neural Networks and Support Vector Machines. The NDMI, EVI and NDVI vegetation indices are important predictors of variables in the construction of the models. The use of vegetation indices obtained from high spatial resolution images, such as the MSI of SENTINEL-2, allows estimating soybean production in an equal and superior way to that of the MODIS sensor of TERRA/AQUA, which have high temporality when associated with algorithms for Machine Learning and when to consider the spatial variability of the field in the response variable of predictive linear regression models.
id UTFPR-12_d44715cb714dc6de44080bdb1e28b909
oai_identifier_str oai:repositorio.utfpr.edu.br:1/32295
network_acronym_str UTFPR-12
network_name_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
repository_id_str
spelling Estimativa de produtividade de soja por meio de imagens orbitais e machine learningSoybean yield estimation using orbital images and machine learningAgricultura de precisãoSensoriamento remotoInteligência artificialPrecision farmingRemote sensingArtificial intelligenceCNPQ::CIENCIAS AGRARIASAgronomiaFor a soy-producing region, accurately and safely estimating the future productivity of its crops can be very strategic from a commercial point of view, because it creates security for cooperatives in producing production. In this sense, orbital Remote Sensing (RS) makes it possible to operationalize crop forecasting and monitoring programs, in addition to characterizing, in a timely manner, the phenology of crops of agronomic interest. For this purpose, Machine Learning (ML) methods have been used to better estimate the state of the crop and the environment for decision making. In this way, the general objective of this study was to improve the existing methods of belief of the agricultural production of the soybean crop through orbital images of higher spatial resolution, with reference data obtained by harvest monitors and processed through ML algorithms, in order to build more accurate yield estimation models. The study was carried out in the Regional Nucleus of Pato Branco/PR, composed of 15 municipalities. To cultivate the soybean cultivation areas, RGB spectro-temporal profiles were created from the generation of maximum and minimum NDVI (Normalized Difference Vegetation Index) and EVI (Enhanced Vegetation Index) images transmitted from the MSI sensor of the SENTINEL-2 satellite and classified by supervised method of the Random Forest (RF) algorithm in the R Studio application. To generate soybean yield estimation models, three supervised AM linear regression algorithms called RF; Support Vectors Machine (SVM) and Artificial Neural Networks (ANN) in the R-Studio app. The input data were used to generate the predictive models: the NDVI, EVI, NDMI (Normalized Difference Moisture Index) vegetation indices, both from the MSI and MODIS sensors (AQUA and TERRA) of the agricultural production areas in the region of Pato Branco -PR, precipitation data, terrain data referring to altitude, soil type, geology and slope, and actual plot production data, corresponding to the 2019/2020, 2020/2021 and 2021/2022 harvests. The predictive regression models were compared with the actual productivity of the plots used in the study. The production estimate generated for the study area was detected with official data at municipal and regional level. The NDVI index provides greater accuracy in the experience of soybean growing areas when compared to the EVI. The ML Random Forest algorithm generates a more accurate production estimation model when compared to Artificial Neural Networks and Support Vector Machines. The NDMI, EVI and NDVI vegetation indices are important predictors of variables in the construction of the models. The use of vegetation indices obtained from high spatial resolution images, such as the MSI of SENTINEL-2, allows estimating soybean production in an equal and superior way to that of the MODIS sensor of TERRA/AQUA, which have high temporality when associated with algorithms for Machine Learning and when to consider the spatial variability of the field in the response variable of predictive linear regression models.Para uma região produtora de soja, estimar, de forma precisa e segura, a produtividade futura de suas lavouras, pode ser muito estratégico sob o ponto de vista comercial, porque gera segurança às cooperativas na comercialização da produção. Nesse sentido, o Sensoriamento Remoto (SR) orbital permite operacionalizar os programas de previsão e monitoramento de safras, além de caracterizar, em tempo hábil, a fenologia de culturas de interesse agronômico. Para tal propósito, tem sido utilizado os métodos de Aprendizado de Máquina (AM) para uma melhor estimativa do estado da cultura e do ambiente para tomada de decisões. Dessa forma, o objetivo geral desse estudo foi aprimorar os métodos de estimativa da produção agrícola da cultura da soja já existentes por meio de imagens orbitais de maior resolução espacial, com dados de referência obtidos por monitores de colheita e processados por meio de algoritmos de AM, de forma a construir modelos de estimativa de safras com maior precisão. O estudo foi realizado no Núcleo Regional de Pato Branco/PR, composto por 15 municípios, localizados no Sudoeste do estado do Paraná. Para determinação das áreas de cultivo da soja foram criados perfis espectrotemporais RGB a partir da geração de imagens de máximo e mínimo NDVI (Normalized Difference Vegetation Index) e EVI (Enhanced Vegetation Index) obtidas do sensor MSI do satélite SENTINEL-2 e classificadas por método supervisionado do algoritmo Random Forest (RF) no aplicativo R Studio. Para gerar os modelos de estimativa de produtividade de soja, foram testados três algoritmos supervisionados de regressão linear por AM, denominados Random Forest (RF), Support Vectors Machine (SVM) e Artificial Neural Networks (ANN) no aplicativo R-Studio. Os dados de entrada para geração dos modelos preditivos foram: os índices de vegetação NDVI, EVI, NDMI (Normalized Difference Moisture Index), tanto do sensor MSI quanto do MODIS (AQUA e TERRA) das áreas de produção agrícola do Núcleo Regional Pato Branco-PR, dados de precipitação, dados de terreno referentes à altitude, tipo de solos, geologia e declividade e, dados reais de produção dos talhões, correspondentes às safras 2019/2020, 2020/2021 e 2021/2022. Os modelos de regressão preditivos foram comparados com à produtividade real dos próprios talhões utilizados no estudo. A estimava de produção gerada para área de estudo, foi comparada com os dados oficiais a nível municipal e regional. O índice NDVI proporciona maior acurácia na determinação das áreas de cultivo da soja quando comparado ao EVI. O algoritmo de AM Random Forest gera um modelo de estimativa de produção com maior precisão quando comparado com os de Support Vectors Machine e Artificial Neural Networks. Os índices de vegetação NDMI, EVI e NDVI se configuraram como importantes variáveis preditoras na construção dos modelos. A utilização de índices de vegetação obtidos por imagens de alta resolução espacial, como o sensor MSI do SENTINEL-2, permite estimar a produção da soja de modo igual e superior as do sensor MODIS do TERRA/AQUA que possuem alta temporalidade quando associadas com algoritmos de Aprendizado Máquina e quando consideram a variabilidade espacial do talhão na variável resposta dos modelos preditivos de regressão linear.Universidade Tecnológica Federal do ParanáPato BrancoBrasilPrograma de Pós-Graduação em AgronomiaUTFPRCampos, Jose Ricardo da Rochahttps://orcid.org/0000-0002-5162-3158http://lattes.cnpq.br/3641260022425300Modolo, Alcir Joséhttps://orcid.org/0000-0002-4796-8743http://lattes.cnpq.br/7372544499267795Bertollo, Gilvan Moiseshttps://orcid.org/0000-0002-8443-6711http://lattes.cnpq.br/3077420833015294Benin, Giovanihttps://orcid.org/0000-0002-7354-5568http://lattes.cnpq.br/8634180310157308Campos, Jose Ricardo da Rochahttp://lattes.cnpq.br/3641260022425300Tagliari, Mário Sérgio Munizhttp://lattes.cnpq.br/3766574314765110Danner, Moeses Andrigohttps://orcid.org/0000-0002-1159-6546http://lattes.cnpq.br/0430213942065076Batistella, Danielli2023-09-05T13:29:33Z2023-09-05T13:29:33Z2023-07-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfBATISTELLA, Danielli. Estimativa de produtividade de soja por meio de imagens orbitais e machine learning. 2023. Tese (Doutorado em Agronomia) - Universidade Tecnológica Federal do Paraná, Pato Branco, 2023.http://repositorio.utfpr.edu.br/jspui/handle/1/32295porhttps://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))instname:Universidade Tecnológica Federal do Paraná (UTFPR)instacron:UTFPR2023-09-06T06:07:51Zoai:repositorio.utfpr.edu.br:1/32295Repositório InstitucionalPUBhttp://repositorio.utfpr.edu.br:8080/oai/requestriut@utfpr.edu.br || sibi@utfpr.edu.bropendoar:2023-09-06T06:07:51Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)false
dc.title.none.fl_str_mv Estimativa de produtividade de soja por meio de imagens orbitais e machine learning
Soybean yield estimation using orbital images and machine learning
title Estimativa de produtividade de soja por meio de imagens orbitais e machine learning
spellingShingle Estimativa de produtividade de soja por meio de imagens orbitais e machine learning
Batistella, Danielli
Agricultura de precisão
Sensoriamento remoto
Inteligência artificial
Precision farming
Remote sensing
Artificial intelligence
CNPQ::CIENCIAS AGRARIAS
Agronomia
title_short Estimativa de produtividade de soja por meio de imagens orbitais e machine learning
title_full Estimativa de produtividade de soja por meio de imagens orbitais e machine learning
title_fullStr Estimativa de produtividade de soja por meio de imagens orbitais e machine learning
title_full_unstemmed Estimativa de produtividade de soja por meio de imagens orbitais e machine learning
title_sort Estimativa de produtividade de soja por meio de imagens orbitais e machine learning
author Batistella, Danielli
author_facet Batistella, Danielli
author_role author
dc.contributor.none.fl_str_mv Campos, Jose Ricardo da Rocha
https://orcid.org/0000-0002-5162-3158
http://lattes.cnpq.br/3641260022425300
Modolo, Alcir José
https://orcid.org/0000-0002-4796-8743
http://lattes.cnpq.br/7372544499267795
Bertollo, Gilvan Moises
https://orcid.org/0000-0002-8443-6711
http://lattes.cnpq.br/3077420833015294
Benin, Giovani
https://orcid.org/0000-0002-7354-5568
http://lattes.cnpq.br/8634180310157308
Campos, Jose Ricardo da Rocha
http://lattes.cnpq.br/3641260022425300
Tagliari, Mário Sérgio Muniz
http://lattes.cnpq.br/3766574314765110
Danner, Moeses Andrigo
https://orcid.org/0000-0002-1159-6546
http://lattes.cnpq.br/0430213942065076
dc.contributor.author.fl_str_mv Batistella, Danielli
dc.subject.por.fl_str_mv Agricultura de precisão
Sensoriamento remoto
Inteligência artificial
Precision farming
Remote sensing
Artificial intelligence
CNPQ::CIENCIAS AGRARIAS
Agronomia
topic Agricultura de precisão
Sensoriamento remoto
Inteligência artificial
Precision farming
Remote sensing
Artificial intelligence
CNPQ::CIENCIAS AGRARIAS
Agronomia
description For a soy-producing region, accurately and safely estimating the future productivity of its crops can be very strategic from a commercial point of view, because it creates security for cooperatives in producing production. In this sense, orbital Remote Sensing (RS) makes it possible to operationalize crop forecasting and monitoring programs, in addition to characterizing, in a timely manner, the phenology of crops of agronomic interest. For this purpose, Machine Learning (ML) methods have been used to better estimate the state of the crop and the environment for decision making. In this way, the general objective of this study was to improve the existing methods of belief of the agricultural production of the soybean crop through orbital images of higher spatial resolution, with reference data obtained by harvest monitors and processed through ML algorithms, in order to build more accurate yield estimation models. The study was carried out in the Regional Nucleus of Pato Branco/PR, composed of 15 municipalities. To cultivate the soybean cultivation areas, RGB spectro-temporal profiles were created from the generation of maximum and minimum NDVI (Normalized Difference Vegetation Index) and EVI (Enhanced Vegetation Index) images transmitted from the MSI sensor of the SENTINEL-2 satellite and classified by supervised method of the Random Forest (RF) algorithm in the R Studio application. To generate soybean yield estimation models, three supervised AM linear regression algorithms called RF; Support Vectors Machine (SVM) and Artificial Neural Networks (ANN) in the R-Studio app. The input data were used to generate the predictive models: the NDVI, EVI, NDMI (Normalized Difference Moisture Index) vegetation indices, both from the MSI and MODIS sensors (AQUA and TERRA) of the agricultural production areas in the region of Pato Branco -PR, precipitation data, terrain data referring to altitude, soil type, geology and slope, and actual plot production data, corresponding to the 2019/2020, 2020/2021 and 2021/2022 harvests. The predictive regression models were compared with the actual productivity of the plots used in the study. The production estimate generated for the study area was detected with official data at municipal and regional level. The NDVI index provides greater accuracy in the experience of soybean growing areas when compared to the EVI. The ML Random Forest algorithm generates a more accurate production estimation model when compared to Artificial Neural Networks and Support Vector Machines. The NDMI, EVI and NDVI vegetation indices are important predictors of variables in the construction of the models. The use of vegetation indices obtained from high spatial resolution images, such as the MSI of SENTINEL-2, allows estimating soybean production in an equal and superior way to that of the MODIS sensor of TERRA/AQUA, which have high temporality when associated with algorithms for Machine Learning and when to consider the spatial variability of the field in the response variable of predictive linear regression models.
publishDate 2023
dc.date.none.fl_str_mv 2023-09-05T13:29:33Z
2023-09-05T13:29:33Z
2023-07-06
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv BATISTELLA, Danielli. Estimativa de produtividade de soja por meio de imagens orbitais e machine learning. 2023. Tese (Doutorado em Agronomia) - Universidade Tecnológica Federal do Paraná, Pato Branco, 2023.
http://repositorio.utfpr.edu.br/jspui/handle/1/32295
identifier_str_mv BATISTELLA, Danielli. Estimativa de produtividade de soja por meio de imagens orbitais e machine learning. 2023. Tese (Doutorado em Agronomia) - Universidade Tecnológica Federal do Paraná, Pato Branco, 2023.
url http://repositorio.utfpr.edu.br/jspui/handle/1/32295
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Tecnológica Federal do Paraná
Pato Branco
Brasil
Programa de Pós-Graduação em Agronomia
UTFPR
publisher.none.fl_str_mv Universidade Tecnológica Federal do Paraná
Pato Branco
Brasil
Programa de Pós-Graduação em Agronomia
UTFPR
dc.source.none.fl_str_mv reponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
instname:Universidade Tecnológica Federal do Paraná (UTFPR)
instacron:UTFPR
instname_str Universidade Tecnológica Federal do Paraná (UTFPR)
instacron_str UTFPR
institution UTFPR
reponame_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
collection Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
repository.name.fl_str_mv Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)
repository.mail.fl_str_mv riut@utfpr.edu.br || sibi@utfpr.edu.br
_version_ 1850498334297423872