A hybrid multi-objective bayesian estimation of distribution algorithm

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Martins, Marcella Scoczynski Ribeiro lattes
Orientador(a): Delgado, Myriam Regattieri De Biase da Silva lattes
Banca de defesa: Delgado, Myriam Regattieri De Biase da Silva, Hermida, Roberto Santana, Meza, Gilberto Reynoso, Pozo, Aurora Trinidad Ramirez
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Curitiba
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/2806
Resumo: Atualmente, diversas metaheurísticas têm sido desenvolvidas para tratarem problemas de otimização multiobjetivo. Os Algoritmos de Estimação de Distribuição são uma classe específica de metaheurísticas que exploram o espaço de variáveis de decisão para construir modelos de distribuição de probabilidade a partir das soluções promissoras. O modelo probabilístico destes algoritmos captura estatísticas das variáveis de decisão e suas interdependências com o problema de otimização. Além do modelo probabilístico, a incorporação de métodos de busca local em Algoritmos Evolutivos Multiobjetivo pode melhorar consideravelmente os resultados. Estas duas técnicas têm sido aplicadas em conjunto na resolução de problemas de otimização multiobjetivo. Nesta tese, um algoritmo de estimação de distribuição híbrido, denominado HMOBEDA (Hybrid Multi-objective Bayesian Estimation of Distribution Algorithm ), o qual é baseado em redes bayesianas e busca local é proposto no contexto de otimização multi e com muitos objetivos a fim de estruturar, no mesmo modelo probabilístico, as variáveis, objetivos e as configurações dos parâmetros da busca local. Diferentes versões do HMOBEDA foram testadas utilizando instâncias do problema da mochila multiobjetivo com dois a cinco e oito objetivos. O HMOBEDA também é comparado com outros cinco métodos evolucionários (incluindo uma versão modificada do NSGA-III, adaptada para otimização combinatória) nas mesmas instâncias do problema da mochila, bem como, em um conjunto de instâncias do modelo MNK-landscape para dois, três, cinco e oito objetivos. As fronteiras de Pareto aproximadas também foram avaliadas utilizando as probabilidades estimadas pelas estruturas das redes resultantes, bem como, foram analisadas as interações entre variáveis, objetivos e parâmetros de busca local a partir da representação da rede bayesiana. Os resultados mostram que a melhor versão do HMOBEDA apresenta um desempenho superior em relação às abordagens comparadas. O algoritmo não só fornece os melhores valores para os indicadores de hipervolume, capacidade e distância invertida geracional, como também apresenta um conjunto de soluções com alta diversidade próximo à fronteira de Pareto estimada.
id UTFPR-12_fe482b0e1dd982f52e9af3b6dccd5e5b
oai_identifier_str oai:repositorio.utfpr.edu.br:1/2806
network_acronym_str UTFPR-12
network_name_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
repository_id_str
spelling 2017-12-21T18:35:20Z2017-12-21T18:35:20Z2017-12-11MARTINS, Marcella Scoczynski Ribeiro. A hybrid multi-objective bayesian estimation of distribution algorithm. 2017. 124 f. Tese (Doutorado em Engenharia Elétrica e Informática Industrial) - Universidade Tecnológica Federal do Paraná, Curitiba, 2017.http://repositorio.utfpr.edu.br/jspui/handle/1/2806Atualmente, diversas metaheurísticas têm sido desenvolvidas para tratarem problemas de otimização multiobjetivo. Os Algoritmos de Estimação de Distribuição são uma classe específica de metaheurísticas que exploram o espaço de variáveis de decisão para construir modelos de distribuição de probabilidade a partir das soluções promissoras. O modelo probabilístico destes algoritmos captura estatísticas das variáveis de decisão e suas interdependências com o problema de otimização. Além do modelo probabilístico, a incorporação de métodos de busca local em Algoritmos Evolutivos Multiobjetivo pode melhorar consideravelmente os resultados. Estas duas técnicas têm sido aplicadas em conjunto na resolução de problemas de otimização multiobjetivo. Nesta tese, um algoritmo de estimação de distribuição híbrido, denominado HMOBEDA (Hybrid Multi-objective Bayesian Estimation of Distribution Algorithm ), o qual é baseado em redes bayesianas e busca local é proposto no contexto de otimização multi e com muitos objetivos a fim de estruturar, no mesmo modelo probabilístico, as variáveis, objetivos e as configurações dos parâmetros da busca local. Diferentes versões do HMOBEDA foram testadas utilizando instâncias do problema da mochila multiobjetivo com dois a cinco e oito objetivos. O HMOBEDA também é comparado com outros cinco métodos evolucionários (incluindo uma versão modificada do NSGA-III, adaptada para otimização combinatória) nas mesmas instâncias do problema da mochila, bem como, em um conjunto de instâncias do modelo MNK-landscape para dois, três, cinco e oito objetivos. As fronteiras de Pareto aproximadas também foram avaliadas utilizando as probabilidades estimadas pelas estruturas das redes resultantes, bem como, foram analisadas as interações entre variáveis, objetivos e parâmetros de busca local a partir da representação da rede bayesiana. Os resultados mostram que a melhor versão do HMOBEDA apresenta um desempenho superior em relação às abordagens comparadas. O algoritmo não só fornece os melhores valores para os indicadores de hipervolume, capacidade e distância invertida geracional, como também apresenta um conjunto de soluções com alta diversidade próximo à fronteira de Pareto estimada.Nowadays, a number of metaheuristics have been developed for dealing with multiobjective optimization problems. Estimation of distribution algorithms (EDAs) are a special class of metaheuristics that explore the decision variable space to construct probabilistic models from promising solutions. The probabilistic model used in EDA captures statistics of decision variables and their interdependencies with the optimization problem. Moreover, the aggregation of local search methods can notably improve the results of multi-objective evolutionary algorithms. Therefore, these hybrid approaches have been jointly applied to multi-objective problems. In this work, a Hybrid Multi-objective Bayesian Estimation of Distribution Algorithm (HMOBEDA), which is based on a Bayesian network, is proposed to multi and many objective scenarios by modeling the joint probability of decision variables, objectives, and configuration parameters of an embedded local search (LS). We tested different versions of HMOBEDA using instances of the multi-objective knapsack problem for two to five and eight objectives. HMOBEDA is also compared with five cutting edge evolutionary algorithms (including a modified version of NSGA-III, for combinatorial optimization) applied to the same knapsack instances, as well to a set of MNK-landscape instances for two, three, five and eight objectives. An analysis of the resulting Bayesian network structures and parameters has also been carried to evaluate the approximated Pareto front from a probabilistic point of view, and also to evaluate how the interactions among variables, objectives and local search parameters are captured by the Bayesian networks. Results show that HMOBEDA outperforms the other approaches. It not only provides the best values for hypervolume, capacity and inverted generational distance indicators in most of the experiments, but it also presents a high diversity solution set close to the estimated Pareto front.engUniversidade Tecnológica Federal do ParanáCuritibaPrograma de Pós-Graduação em Engenharia Elétrica e Informática IndustrialUTFPRBrasilCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOEngenharia ElétricaAlgorítmos computacionaisProbabilidadesTeoria bayesiana de decisão estatísticaAlgorítmosOtimização matemáticaEngenharia elétricaComputer algorithmsProbabilitiesBayesian statistical decision theoryAlgorithmsMathematical optimizationElectric engineeringA hybrid multi-objective bayesian estimation of distribution algorithmUm algoritmo de estimação de distribuição híbrido multiobjetivo com modelo probabilístico bayesianoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisCuritibaDelgado, Myriam Regattieri De Biase da Silvahttp://lattes.cnpq.br/4166922845507601Lüders, Ricardohttp://lattes.cnpq.br/5158617067991861Delgado, Myriam Regattieri De Biase da SilvaHermida, Roberto SantanaMeza, Gilberto ReynosoPozo, Aurora Trinidad Ramirezhttp://lattes.cnpq.br/5212122361603572Martins, Marcella Scoczynski Ribeiroinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))instname:Universidade Tecnológica Federal do Paraná (UTFPR)instacron:UTFPRTEXTCT_CPGEI_D_Martins, Marcella Scoczynski Ribeiro_2017.pdf.txtCT_CPGEI_D_Martins, Marcella Scoczynski Ribeiro_2017.pdf.txtExtracted texttext/plain272381http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/2806/3/CT_CPGEI_D_Martins%2c%20Marcella%20Scoczynski%20Ribeiro_2017.pdf.txtf7ddaad0c960332a9d99febaeb0eb2ccMD53THUMBNAILCT_CPGEI_D_Martins, Marcella Scoczynski Ribeiro_2017.pdf.jpgCT_CPGEI_D_Martins, Marcella Scoczynski Ribeiro_2017.pdf.jpgGenerated Thumbnailimage/jpeg1212http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/2806/4/CT_CPGEI_D_Martins%2c%20Marcella%20Scoczynski%20Ribeiro_2017.pdf.jpgf6b586593fe32610db3ab5a8cde76c7dMD54ORIGINALCT_CPGEI_D_Martins, Marcella Scoczynski Ribeiro_2017.pdfCT_CPGEI_D_Martins, Marcella Scoczynski Ribeiro_2017.pdfapplication/pdf975391http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/2806/1/CT_CPGEI_D_Martins%2c%20Marcella%20Scoczynski%20Ribeiro_2017.pdfaedebff6691f8332d271828adadb925aMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/2806/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD521/28062017-12-21 16:35:20.154oai:repositorio.utfpr.edu.br:1/2806Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório de PublicaçõesPUBhttp://repositorio.utfpr.edu.br:8080/oai/requestopendoar:2017-12-21T18:35:20Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)false
dc.title.pt_BR.fl_str_mv A hybrid multi-objective bayesian estimation of distribution algorithm
dc.title.alternative.pt_BR.fl_str_mv Um algoritmo de estimação de distribuição híbrido multiobjetivo com modelo probabilístico bayesiano
title A hybrid multi-objective bayesian estimation of distribution algorithm
spellingShingle A hybrid multi-objective bayesian estimation of distribution algorithm
Martins, Marcella Scoczynski Ribeiro
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Algorítmos computacionais
Probabilidades
Teoria bayesiana de decisão estatística
Algorítmos
Otimização matemática
Engenharia elétrica
Computer algorithms
Probabilities
Bayesian statistical decision theory
Algorithms
Mathematical optimization
Electric engineering
Engenharia Elétrica
title_short A hybrid multi-objective bayesian estimation of distribution algorithm
title_full A hybrid multi-objective bayesian estimation of distribution algorithm
title_fullStr A hybrid multi-objective bayesian estimation of distribution algorithm
title_full_unstemmed A hybrid multi-objective bayesian estimation of distribution algorithm
title_sort A hybrid multi-objective bayesian estimation of distribution algorithm
author Martins, Marcella Scoczynski Ribeiro
author_facet Martins, Marcella Scoczynski Ribeiro
author_role author
dc.contributor.advisor1.fl_str_mv Delgado, Myriam Regattieri De Biase da Silva
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/4166922845507601
dc.contributor.advisor-co1.fl_str_mv Lüders, Ricardo
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/5158617067991861
dc.contributor.referee1.fl_str_mv Delgado, Myriam Regattieri De Biase da Silva
dc.contributor.referee2.fl_str_mv Hermida, Roberto Santana
dc.contributor.referee3.fl_str_mv Meza, Gilberto Reynoso
dc.contributor.referee4.fl_str_mv Pozo, Aurora Trinidad Ramirez
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/5212122361603572
dc.contributor.author.fl_str_mv Martins, Marcella Scoczynski Ribeiro
contributor_str_mv Delgado, Myriam Regattieri De Biase da Silva
Lüders, Ricardo
Delgado, Myriam Regattieri De Biase da Silva
Hermida, Roberto Santana
Meza, Gilberto Reynoso
Pozo, Aurora Trinidad Ramirez
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
topic CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Algorítmos computacionais
Probabilidades
Teoria bayesiana de decisão estatística
Algorítmos
Otimização matemática
Engenharia elétrica
Computer algorithms
Probabilities
Bayesian statistical decision theory
Algorithms
Mathematical optimization
Electric engineering
Engenharia Elétrica
dc.subject.por.fl_str_mv Algorítmos computacionais
Probabilidades
Teoria bayesiana de decisão estatística
Algorítmos
Otimização matemática
Engenharia elétrica
Computer algorithms
Probabilities
Bayesian statistical decision theory
Algorithms
Mathematical optimization
Electric engineering
dc.subject.capes.pt_BR.fl_str_mv Engenharia Elétrica
description Atualmente, diversas metaheurísticas têm sido desenvolvidas para tratarem problemas de otimização multiobjetivo. Os Algoritmos de Estimação de Distribuição são uma classe específica de metaheurísticas que exploram o espaço de variáveis de decisão para construir modelos de distribuição de probabilidade a partir das soluções promissoras. O modelo probabilístico destes algoritmos captura estatísticas das variáveis de decisão e suas interdependências com o problema de otimização. Além do modelo probabilístico, a incorporação de métodos de busca local em Algoritmos Evolutivos Multiobjetivo pode melhorar consideravelmente os resultados. Estas duas técnicas têm sido aplicadas em conjunto na resolução de problemas de otimização multiobjetivo. Nesta tese, um algoritmo de estimação de distribuição híbrido, denominado HMOBEDA (Hybrid Multi-objective Bayesian Estimation of Distribution Algorithm ), o qual é baseado em redes bayesianas e busca local é proposto no contexto de otimização multi e com muitos objetivos a fim de estruturar, no mesmo modelo probabilístico, as variáveis, objetivos e as configurações dos parâmetros da busca local. Diferentes versões do HMOBEDA foram testadas utilizando instâncias do problema da mochila multiobjetivo com dois a cinco e oito objetivos. O HMOBEDA também é comparado com outros cinco métodos evolucionários (incluindo uma versão modificada do NSGA-III, adaptada para otimização combinatória) nas mesmas instâncias do problema da mochila, bem como, em um conjunto de instâncias do modelo MNK-landscape para dois, três, cinco e oito objetivos. As fronteiras de Pareto aproximadas também foram avaliadas utilizando as probabilidades estimadas pelas estruturas das redes resultantes, bem como, foram analisadas as interações entre variáveis, objetivos e parâmetros de busca local a partir da representação da rede bayesiana. Os resultados mostram que a melhor versão do HMOBEDA apresenta um desempenho superior em relação às abordagens comparadas. O algoritmo não só fornece os melhores valores para os indicadores de hipervolume, capacidade e distância invertida geracional, como também apresenta um conjunto de soluções com alta diversidade próximo à fronteira de Pareto estimada.
publishDate 2017
dc.date.accessioned.fl_str_mv 2017-12-21T18:35:20Z
dc.date.available.fl_str_mv 2017-12-21T18:35:20Z
dc.date.issued.fl_str_mv 2017-12-11
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MARTINS, Marcella Scoczynski Ribeiro. A hybrid multi-objective bayesian estimation of distribution algorithm. 2017. 124 f. Tese (Doutorado em Engenharia Elétrica e Informática Industrial) - Universidade Tecnológica Federal do Paraná, Curitiba, 2017.
dc.identifier.uri.fl_str_mv http://repositorio.utfpr.edu.br/jspui/handle/1/2806
identifier_str_mv MARTINS, Marcella Scoczynski Ribeiro. A hybrid multi-objective bayesian estimation of distribution algorithm. 2017. 124 f. Tese (Doutorado em Engenharia Elétrica e Informática Industrial) - Universidade Tecnológica Federal do Paraná, Curitiba, 2017.
url http://repositorio.utfpr.edu.br/jspui/handle/1/2806
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Tecnológica Federal do Paraná
Curitiba
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial
dc.publisher.initials.fl_str_mv UTFPR
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Tecnológica Federal do Paraná
Curitiba
dc.source.none.fl_str_mv reponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
instname:Universidade Tecnológica Federal do Paraná (UTFPR)
instacron:UTFPR
instname_str Universidade Tecnológica Federal do Paraná (UTFPR)
instacron_str UTFPR
institution UTFPR
reponame_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
collection Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
bitstream.url.fl_str_mv http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/2806/3/CT_CPGEI_D_Martins%2c%20Marcella%20Scoczynski%20Ribeiro_2017.pdf.txt
http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/2806/4/CT_CPGEI_D_Martins%2c%20Marcella%20Scoczynski%20Ribeiro_2017.pdf.jpg
http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/2806/1/CT_CPGEI_D_Martins%2c%20Marcella%20Scoczynski%20Ribeiro_2017.pdf
http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/2806/2/license.txt
bitstream.checksum.fl_str_mv f7ddaad0c960332a9d99febaeb0eb2cc
f6b586593fe32610db3ab5a8cde76c7d
aedebff6691f8332d271828adadb925a
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)
repository.mail.fl_str_mv
_version_ 1805923706638172160