Opções de longo prazo: um novo modelo incluindo reversão à média com crescimento exponencial, saltos e volatilidade estocástica
| Ano de defesa: | 2024 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Link de acesso: | https://hdl.handle.net/10438/36292 |
Resumo: | A presente dissertação tem como objetivo apresentar uma nova modelagem para apreçamento de opções utilizando simulações de Monte Carlo, na qual o processo estocástico do ativo-objeto segue um movimento aleatório com reversão à média, crescimento exponencial, volatilidade estocástica e saltos. Diferentemente dos modelos tradicionais, um pequeno componente de reversão a tendência de longo prazo com crescimento exponencial contém a função densidade de probabilidade do preço da ação no longo prazo, limitando tanto o upside quanto o downside do preço do ativo, introduzindo assim uma inclinação negativa na superfície de volatilidade e, consequentemente, tornando as opções longas mais baratas do que os modelos tradicionais estimariam. |
| id |
FGV_2e307da33455c4f2133e767acdda07f3 |
|---|---|
| oai_identifier_str |
oai:repositorio.fgv.br:10438/36292 |
| network_acronym_str |
FGV |
| network_name_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
| repository_id_str |
|
| spelling |
Baetas, Filipe BarretoEscolas::EPGEBarbedo, Cláudio HenriqueAraújo, Gustavo SilvaGlasman, Daniela Kubudi2024-12-26T17:16:46Z2024-12-26T17:16:46Z2024-11-26https://hdl.handle.net/10438/36292A presente dissertação tem como objetivo apresentar uma nova modelagem para apreçamento de opções utilizando simulações de Monte Carlo, na qual o processo estocástico do ativo-objeto segue um movimento aleatório com reversão à média, crescimento exponencial, volatilidade estocástica e saltos. Diferentemente dos modelos tradicionais, um pequeno componente de reversão a tendência de longo prazo com crescimento exponencial contém a função densidade de probabilidade do preço da ação no longo prazo, limitando tanto o upside quanto o downside do preço do ativo, introduzindo assim uma inclinação negativa na superfície de volatilidade e, consequentemente, tornando as opções longas mais baratas do que os modelos tradicionais estimariam.This dissertation aims to present a modeling approach for pricing options using Monte Carlo simulation, in which the stochastic process of the underlying asset follows a random walk with a mean-reversion fator, exponential growth, stochastic volatility and jump diffusion. Unlike the traditional model of stochastic volatility and jump diffusion, a small mean-reversion fator with exponential growth contains the probability density function of the stock price in the long term, limiting both the upside and downside of the stock price, introducing a negative slope in the volatility surface term structure, and consequently, making long maturity options cheaper than traditional models would estimate.porApreçamento de opçõesMonte CarloReversão à mediaCrescimento exponencialVolatilidade estocásticaSaltosSuperfície de volatilidadeOption pricingMean reversionExponencial growthStochastic volatilityJump diffusionVolatility surfaceEconomiaMonte Carlo, Método deProcesso estocásticoVolatilidade (Finanças)EconomiaOpções de longo prazo: um novo modelo incluindo reversão à média com crescimento exponencial, saltos e volatilidade estocásticainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-85112https://repositorio.fgv.br/bitstreams/b9d61880-3711-4ae3-a080-e75a6b2c9c4c/download2a4b67231f701c416a809246e7a10077MD51ORIGINALOpções de Longo Prazo_ Um Novo Modelo incluindo Reversão à Média com Crescimento Exponencial, Saltos e Volatilidade Estocástica.pdfOpções de Longo Prazo_ Um Novo Modelo incluindo Reversão à Média com Crescimento Exponencial, Saltos e Volatilidade Estocástica.pdfPDFapplication/pdf1513039https://repositorio.fgv.br/bitstreams/42ef079b-a991-45ab-b381-ad99e619b268/download7aae676f80f39fb20eaff9056ecb13a3MD52TEXTOpções de Longo Prazo_ Um Novo Modelo incluindo Reversão à Média com Crescimento Exponencial, Saltos e Volatilidade Estocástica.pdf.txtOpções de Longo Prazo_ Um Novo Modelo incluindo Reversão à Média com Crescimento Exponencial, Saltos e Volatilidade Estocástica.pdf.txtExtracted texttext/plain50304https://repositorio.fgv.br/bitstreams/78fc4d9e-ef6c-46d7-82fd-fa3227dbc050/downloadb56d57255d8bd73fb5ca843c12fb35daMD53THUMBNAILOpções de Longo Prazo_ Um Novo Modelo incluindo Reversão à Média com Crescimento Exponencial, Saltos e Volatilidade Estocástica.pdf.jpgOpções de Longo Prazo_ Um Novo Modelo incluindo Reversão à Média com Crescimento Exponencial, Saltos e Volatilidade Estocástica.pdf.jpgGenerated Thumbnailimage/jpeg3015https://repositorio.fgv.br/bitstreams/09899c36-2e5f-409f-922f-4b1afe7b180b/download8904f4f5e7dd44ddabc104c66f7620a2MD5410438/362922024-12-26 21:00:34.488open.accessoai:repositorio.fgv.br:10438/36292https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742024-12-26T21:00:34Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVGVybW8gZGUgTGljZW5jaWFtZW50bwpIw6EgdW0gw7psdGltbyBwYXNzbzogcGFyYSByZXByb2R1emlyLCB0cmFkdXppciBlIGRpc3RyaWJ1aXIgc3VhIHN1Ym1pc3PDo28gZW0gdG9kbyBvIG11bmRvLCB2b2PDqiBkZXZlIGNvbmNvcmRhciBjb20gb3MgdGVybW9zIGEgc2VndWlyLgoKQ29uY29yZGFyIGNvbSBvIFRlcm1vIGRlIExpY2VuY2lhbWVudG8sIHNlbGVjaW9uYW5kbyAiRXUgY29uY29yZG8gY29tIG8gVGVybW8gZGUgTGljZW5jaWFtZW50byIgZSBjbGlxdWUgZW0gIkZpbmFsaXphciBzdWJtaXNzw6NvIi4KClRFUk1PUyBMSUNFTkNJQU1FTlRPIFBBUkEgQVJRVUlWQU1FTlRPLCBSRVBST0RVw4fDg08gRSBESVZVTEdBw4fDg08gUMOaQkxJQ0EgREUgQ09OVEXDmkRPIMOAIEJJQkxJT1RFQ0EgVklSVFVBTCBGR1YgKHZlcnPDo28gMS4yKQoKMS4gVm9jw6osIHVzdcOhcmlvLWRlcG9zaXRhbnRlIGRhIEJpYmxpb3RlY2EgVmlydHVhbCBGR1YsIGFzc2VndXJhLCBubyBwcmVzZW50ZSBhdG8sIHF1ZSDDqSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXRyaW1vbmlhaXMgZS9vdSBkaXJlaXRvcyBjb25leG9zIHJlZmVyZW50ZXMgw6AgdG90YWxpZGFkZSBkYSBPYnJhIG9yYSBkZXBvc2l0YWRhIGVtIGZvcm1hdG8gZGlnaXRhbCwgYmVtIGNvbW8gZGUgc2V1cyBjb21wb25lbnRlcyBtZW5vcmVzLCBlbSBzZSB0cmF0YW5kbyBkZSBvYnJhIGNvbGV0aXZhLCBjb25mb3JtZSBvIHByZWNlaXR1YWRvIHBlbGEgTGVpIDkuNjEwLzk4IGUvb3UgTGVpIDkuNjA5Lzk4LiBOw6NvIHNlbmRvIGVzdGUgbyBjYXNvLCB2b2PDqiBhc3NlZ3VyYSB0ZXIgb2J0aWRvLCBkaXJldGFtZW50ZSBkb3MgZGV2aWRvcyB0aXR1bGFyZXMsIGF1dG9yaXphw6fDo28gcHLDqXZpYSBlIGV4cHJlc3NhIHBhcmEgbyBkZXDDs3NpdG8gZSBkaXZ1bGdhw6fDo28gZGEgT2JyYSwgYWJyYW5nZW5kbyB0b2RvcyBvcyBkaXJlaXRvcyBhdXRvcmFpcyBlIGNvbmV4b3MgYWZldGFkb3MgcGVsYSBhc3NpbmF0dXJhIGRvcyBwcmVzZW50ZXMgdGVybW9zIGRlIGxpY2VuY2lhbWVudG8sIGRlIG1vZG8gYSBlZmV0aXZhbWVudGUgaXNlbnRhciBhIEZ1bmRhw6fDo28gR2V0dWxpbyBWYXJnYXMgZSBzZXVzIGZ1bmNpb27DoXJpb3MgZGUgcXVhbHF1ZXIgcmVzcG9uc2FiaWxpZGFkZSBwZWxvIHVzbyBuw6NvLWF1dG9yaXphZG8gZG8gbWF0ZXJpYWwgZGVwb3NpdGFkbywgc2VqYSBlbSB2aW5jdWxhw6fDo28gw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgc2VqYSBlbSB2aW5jdWxhw6fDo28gYSBxdWFpc3F1ZXIgc2VydmnDp29zIGRlIGJ1c2NhIGUgZGlzdHJpYnVpw6fDo28gZGUgY29udGXDumRvIHF1ZSBmYcOnYW0gdXNvIGRhcyBpbnRlcmZhY2VzIGUgZXNwYcOnbyBkZSBhcm1hemVuYW1lbnRvIHByb3ZpZGVuY2lhZG9zIHBlbGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBwb3IgbWVpbyBkZSBzZXVzIHNpc3RlbWFzIGluZm9ybWF0aXphZG9zLgoKMi4gQSBhc3NpbmF0dXJhIGRlc3RhIGxpY2Vuw6dhIHRlbSBjb21vIGNvbnNlccO8w6puY2lhIGEgdHJhbnNmZXLDqm5jaWEsIGEgdMOtdHVsbyBuw6NvLWV4Y2x1c2l2byBlIG7Do28tb25lcm9zbywgaXNlbnRhIGRvIHBhZ2FtZW50byBkZSByb3lhbHRpZXMgb3UgcXVhbHF1ZXIgb3V0cmEgY29udHJhcHJlc3Rhw6fDo28sIHBlY3VuacOhcmlhIG91IG7Do28sIMOgIEZ1bmRhw6fDo28gR2V0dWxpbyBWYXJnYXMsIGRvcyBkaXJlaXRvcyBkZSBhcm1hemVuYXIgZGlnaXRhbG1lbnRlLCByZXByb2R1emlyIGUgZGlzdHJpYnVpciBuYWNpb25hbCBlIGludGVybmFjaW9uYWxtZW50ZSBhIE9icmEsIGluY2x1aW5kby1zZSBvIHNldSByZXN1bW8vYWJzdHJhY3QsIHBvciBtZWlvcyBlbGV0csO0bmljb3MsIG5vIHNpdGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYW8gcMO6YmxpY28gZW0gZ2VyYWwsIGVtIHJlZ2ltZSBkZSBhY2Vzc28gYWJlcnRvLgoKMy4gQSBwcmVzZW50ZSBsaWNlbsOnYSB0YW1iw6ltIGFicmFuZ2UsIG5vcyBtZXNtb3MgdGVybW9zIGVzdGFiZWxlY2lkb3Mgbm8gaXRlbSAyLCBzdXByYSwgcXVhbHF1ZXIgZGlyZWl0byBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIGNhYsOtdmVsIGVtIHJlbGHDp8OjbyDDoCBPYnJhIG9yYSBkZXBvc2l0YWRhLCBpbmNsdWluZG8tc2Ugb3MgdXNvcyByZWZlcmVudGVzIMOgIHJlcHJlc2VudGHDp8OjbyBww7pibGljYSBlL291IGV4ZWN1w6fDo28gcMO6YmxpY2EsIGJlbSBjb21vIHF1YWxxdWVyIG91dHJhIG1vZGFsaWRhZGUgZGUgY29tdW5pY2HDp8OjbyBhbyBww7pibGljbyBxdWUgZXhpc3RhIG91IHZlbmhhIGEgZXhpc3Rpciwgbm9zIHRlcm1vcyBkbyBhcnRpZ28gNjggZSBzZWd1aW50ZXMgZGEgTGVpIDkuNjEwLzk4LCBuYSBleHRlbnPDo28gcXVlIGZvciBhcGxpY8OhdmVsIGFvcyBzZXJ2acOnb3MgcHJlc3RhZG9zIGFvIHDDumJsaWNvIHBlbGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHVi4KCjQuIEVzdGEgbGljZW7Dp2EgYWJyYW5nZSwgYWluZGEsIG5vcyBtZXNtb3MgdGVybW9zIGVzdGFiZWxlY2lkb3Mgbm8gaXRlbSAyLCBzdXByYSwgdG9kb3Mgb3MgZGlyZWl0b3MgY29uZXhvcyBkZSBhcnRpc3RhcyBpbnTDqXJwcmV0ZXMgb3UgZXhlY3V0YW50ZXMsIHByb2R1dG9yZXMgZm9ub2dyw6FmaWNvcyBvdSBlbXByZXNhcyBkZSByYWRpb2RpZnVzw6NvIHF1ZSBldmVudHVhbG1lbnRlIHNlamFtIGFwbGljw6F2ZWlzIGVtIHJlbGHDp8OjbyDDoCBvYnJhIGRlcG9zaXRhZGEsIGVtIGNvbmZvcm1pZGFkZSBjb20gbyByZWdpbWUgZml4YWRvIG5vIFTDrXR1bG8gViBkYSBMZWkgOS42MTAvOTguCgo1LiBTZSBhIE9icmEgZGVwb3NpdGFkYSBmb2kgb3Ugw6kgb2JqZXRvIGRlIGZpbmFuY2lhbWVudG8gcG9yIGluc3RpdHVpw6fDtWVzIGRlIGZvbWVudG8gw6AgcGVzcXVpc2Egb3UgcXVhbHF1ZXIgb3V0cmEgc2VtZWxoYW50ZSwgdm9jw6ogb3UgbyB0aXR1bGFyIGFzc2VndXJhIHF1ZSBjdW1wcml1IHRvZGFzIGFzIG9icmlnYcOnw7VlcyBxdWUgbGhlIGZvcmFtIGltcG9zdGFzIHBlbGEgaW5zdGl0dWnDp8OjbyBmaW5hbmNpYWRvcmEgZW0gcmF6w6NvIGRvIGZpbmFuY2lhbWVudG8sIGUgcXVlIG7Do28gZXN0w6EgY29udHJhcmlhbmRvIHF1YWxxdWVyIGRpc3Bvc2nDp8OjbyBjb250cmF0dWFsIHJlZmVyZW50ZSDDoCBwdWJsaWNhw6fDo28gZG8gY29udGXDumRvIG9yYSBzdWJtZXRpZG8gw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHVi4KCjYuIENhc28gYSBPYnJhIG9yYSBkZXBvc2l0YWRhIGVuY29udHJlLXNlIGxpY2VuY2lhZGEgc29iIHVtYSBsaWNlbsOnYSBDcmVhdGl2ZSBDb21tb25zIChxdWFscXVlciB2ZXJzw6NvKSwgc29iIGEgbGljZW7Dp2EgR05VIEZyZWUgRG9jdW1lbnRhdGlvbiBMaWNlbnNlIChxdWFscXVlciB2ZXJzw6NvKSwgb3Ugb3V0cmEgbGljZW7Dp2EgcXVhbGlmaWNhZGEgY29tbyBsaXZyZSBzZWd1bmRvIG9zIGNyaXTDqXJpb3MgZGEgRGVmaW5pdGlvbiBvZiBGcmVlIEN1bHR1cmFsIFdvcmtzIChkaXNwb27DrXZlbCBlbTogaHR0cDovL2ZyZWVkb21kZWZpbmVkLm9yZy9EZWZpbml0aW9uKSBvdSBGcmVlIFNvZnR3YXJlIERlZmluaXRpb24gKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vd3d3LmdudS5vcmcvcGhpbG9zb3BoeS9mcmVlLXN3Lmh0bWwpLCBvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbSBjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcyBsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIgYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEgaW50ZWdyYWwuCgpBbyBjb25jbHVpciBhIHByZXNlbnRlIGV0YXBhIGUgYXMgZXRhcGFzIHN1YnNlccO8ZW50ZXMgZG8gcHJvY2Vzc28gZGUgc3VibWlzc8OjbyBkZSBhcnF1aXZvcyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCB2b2PDqiBhdGVzdGEgcXVlIGxldSBlIGNvbmNvcmRhIGludGVncmFsbWVudGUgY29tIG9zIHRlcm1vcyBhY2ltYSBkZWxpbWl0YWRvcywgYXNzaW5hbmRvLW9zIHNlbSBmYXplciBxdWFscXVlciByZXNlcnZhIGUgbm92YW1lbnRlIGNvbmZpcm1hbmRvIHF1ZSBjdW1wcmUgb3MgcmVxdWlzaXRvcyBpbmRpY2Fkb3Mgbm8gaXRlbSAxLCBzdXByYS4KCkhhdmVuZG8gcXVhbHF1ZXIgZGlzY29yZMOibmNpYSBlbSByZWxhw6fDo28gYW9zIHByZXNlbnRlcyB0ZXJtb3Mgb3UgbsOjbyBzZSB2ZXJpZmljYW5kbyBvIGV4aWdpZG8gbm8gaXRlbSAxLCBzdXByYSwgdm9jw6ogZGV2ZSBpbnRlcnJvbXBlciBpbWVkaWF0YW1lbnRlIG8gcHJvY2Vzc28gZGUgc3VibWlzc8Ojby4gQSBjb250aW51aWRhZGUgZG8gcHJvY2Vzc28gZXF1aXZhbGUgw6AgYXNzaW5hdHVyYSBkZXN0ZSBkb2N1bWVudG8sIGNvbSB0b2RhcyBhcyBjb25zZXHDvMOqbmNpYXMgbmVsZSBwcmV2aXN0YXMsIHN1amVpdGFuZG8tc2UgbyBzaWduYXTDoXJpbyBhIHNhbsOnw7VlcyBjaXZpcyBlIGNyaW1pbmFpcyBjYXNvIG7Do28gc2VqYSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXRyaW1vbmlhaXMgZS9vdSBjb25leG9zIGFwbGljw6F2ZWlzIMOgIE9icmEgZGVwb3NpdGFkYSBkdXJhbnRlIGVzdGUgcHJvY2Vzc28sIG91IGNhc28gbsOjbyB0ZW5oYSBvYnRpZG8gcHLDqXZpYSBlIGV4cHJlc3NhIGF1dG9yaXphw6fDo28gZG8gdGl0dWxhciBwYXJhIG8gZGVww7NzaXRvIGUgdG9kb3Mgb3MgdXNvcyBkYSBPYnJhIGVudm9sdmlkb3MuCgpQYXJhIGEgc29sdcOnw6NvIGRlIHF1YWxxdWVyIGTDunZpZGEgcXVhbnRvIGFvcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50byBlIG8gcHJvY2Vzc28gZGUgc3VibWlzc8OjbywgY2xpcXVlIG5vIGxpbmsgIkZhbGUgY29ub3NjbyIuCgpTZSB2b2PDqiB0aXZlciBkw7p2aWRhcyBzb2JyZSBlc3RhIGxpY2Vuw6dhLCBwb3IgZmF2b3IgZW50cmUgZW0gY29udGF0byBjb20gb3MgYWRtaW5pc3RyYWRvcmVzIGRvIFJlcG9zaXTDs3Jpby4K |
| dc.title.por.fl_str_mv |
Opções de longo prazo: um novo modelo incluindo reversão à média com crescimento exponencial, saltos e volatilidade estocástica |
| title |
Opções de longo prazo: um novo modelo incluindo reversão à média com crescimento exponencial, saltos e volatilidade estocástica |
| spellingShingle |
Opções de longo prazo: um novo modelo incluindo reversão à média com crescimento exponencial, saltos e volatilidade estocástica Baetas, Filipe Barreto Apreçamento de opções Monte Carlo Reversão à media Crescimento exponencial Volatilidade estocástica Saltos Superfície de volatilidade Option pricing Mean reversion Exponencial growth Stochastic volatility Jump diffusion Volatility surface Economia Monte Carlo, Método de Processo estocástico Volatilidade (Finanças) Economia |
| title_short |
Opções de longo prazo: um novo modelo incluindo reversão à média com crescimento exponencial, saltos e volatilidade estocástica |
| title_full |
Opções de longo prazo: um novo modelo incluindo reversão à média com crescimento exponencial, saltos e volatilidade estocástica |
| title_fullStr |
Opções de longo prazo: um novo modelo incluindo reversão à média com crescimento exponencial, saltos e volatilidade estocástica |
| title_full_unstemmed |
Opções de longo prazo: um novo modelo incluindo reversão à média com crescimento exponencial, saltos e volatilidade estocástica |
| title_sort |
Opções de longo prazo: um novo modelo incluindo reversão à média com crescimento exponencial, saltos e volatilidade estocástica |
| author |
Baetas, Filipe Barreto |
| author_facet |
Baetas, Filipe Barreto |
| author_role |
author |
| dc.contributor.unidadefgv.por.fl_str_mv |
Escolas::EPGE |
| dc.contributor.member.none.fl_str_mv |
Barbedo, Cláudio Henrique Araújo, Gustavo Silva |
| dc.contributor.author.fl_str_mv |
Baetas, Filipe Barreto |
| dc.contributor.advisor1.fl_str_mv |
Glasman, Daniela Kubudi |
| contributor_str_mv |
Glasman, Daniela Kubudi |
| dc.subject.por.fl_str_mv |
Apreçamento de opções Monte Carlo Reversão à media Crescimento exponencial Volatilidade estocástica Saltos Superfície de volatilidade |
| topic |
Apreçamento de opções Monte Carlo Reversão à media Crescimento exponencial Volatilidade estocástica Saltos Superfície de volatilidade Option pricing Mean reversion Exponencial growth Stochastic volatility Jump diffusion Volatility surface Economia Monte Carlo, Método de Processo estocástico Volatilidade (Finanças) Economia |
| dc.subject.eng.fl_str_mv |
Option pricing Mean reversion Exponencial growth Stochastic volatility Jump diffusion Volatility surface |
| dc.subject.area.por.fl_str_mv |
Economia |
| dc.subject.bibliodata.por.fl_str_mv |
Monte Carlo, Método de Processo estocástico Volatilidade (Finanças) Economia |
| description |
A presente dissertação tem como objetivo apresentar uma nova modelagem para apreçamento de opções utilizando simulações de Monte Carlo, na qual o processo estocástico do ativo-objeto segue um movimento aleatório com reversão à média, crescimento exponencial, volatilidade estocástica e saltos. Diferentemente dos modelos tradicionais, um pequeno componente de reversão a tendência de longo prazo com crescimento exponencial contém a função densidade de probabilidade do preço da ação no longo prazo, limitando tanto o upside quanto o downside do preço do ativo, introduzindo assim uma inclinação negativa na superfície de volatilidade e, consequentemente, tornando as opções longas mais baratas do que os modelos tradicionais estimariam. |
| publishDate |
2024 |
| dc.date.accessioned.fl_str_mv |
2024-12-26T17:16:46Z |
| dc.date.available.fl_str_mv |
2024-12-26T17:16:46Z |
| dc.date.issued.fl_str_mv |
2024-11-26 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10438/36292 |
| url |
https://hdl.handle.net/10438/36292 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional do FGV (FGV Repositório Digital) instname:Fundação Getulio Vargas (FGV) instacron:FGV |
| instname_str |
Fundação Getulio Vargas (FGV) |
| instacron_str |
FGV |
| institution |
FGV |
| reponame_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
| collection |
Repositório Institucional do FGV (FGV Repositório Digital) |
| bitstream.url.fl_str_mv |
https://repositorio.fgv.br/bitstreams/b9d61880-3711-4ae3-a080-e75a6b2c9c4c/download https://repositorio.fgv.br/bitstreams/42ef079b-a991-45ab-b381-ad99e619b268/download https://repositorio.fgv.br/bitstreams/78fc4d9e-ef6c-46d7-82fd-fa3227dbc050/download https://repositorio.fgv.br/bitstreams/09899c36-2e5f-409f-922f-4b1afe7b180b/download |
| bitstream.checksum.fl_str_mv |
2a4b67231f701c416a809246e7a10077 7aae676f80f39fb20eaff9056ecb13a3 b56d57255d8bd73fb5ca843c12fb35da 8904f4f5e7dd44ddabc104c66f7620a2 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV) |
| repository.mail.fl_str_mv |
|
| _version_ |
1827842398975164416 |