Exportação concluída — 

Evolução da exposição ao risco de crédito: um estudo empírico do mercado brasileiro de debêntures entre 2014 e 2017

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Fontes, Jean Raphael da Silva de
Orientador(a): Pessoa, Marcelo de Sales
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: https://hdl.handle.net/10438/24304
Resumo: The post-2008 financial crisis intensified and improved risk management around the world. From 2014 to 2017, Brazil experienced a severe period of economic crisis culminating in the largest recession in history in 2016. The objective of this work is to measure the impact of this crisis on the credit spread in the secondary market of debentures and the consequent probability of default implicit of these assets. The work analyzes the data of the private credit curve in Brazil for the AAA, AA and A Ratings published daily by ANBIMA based on Nelson and Siegel (1987) parametric model with revision proposed by Diebold and Li (2006). Based on these data, we extracted the daily probability of default implicit using the reduced form of the Duffie and Singleton model (1999) proposed by Xu and Nencioni (2000). This study seeks to identify the perception of agents of the credit market in relation to the increase of risk in the current Brazilian economic scenario. The study concluded that there was a significant increase in the credit spread to the apex in 2016, decreasing during 2017 with the more favorable economic scenario and the fall in interest rates. However, the model data showed high daily volatility. Regarding Probability of Default, there was a great evolution in the perception of credit risk by agents, but there was a certain delay in the pricing of this risk when compared to other economic indicators. In the comparison of the model data with the calculated default probability data for each individual asset, a large difference was observed between assets with the same rating level and the average of the model data. The data of this model can be used in future work to set up portfolios with a better return risk ratio, besides attesting the usefulness of this tool to the economic agents to price their operations and to fulfill their expectations.
id FGV_2eda0ae0bb6e2c6d8a1b0e846594703b
oai_identifier_str oai:repositorio.fgv.br:10438/24304
network_acronym_str FGV
network_name_str Repositório Institucional do FGV (FGV Repositório Digital)
repository_id_str
spelling Fontes, Jean Raphael da Silva deEscolas::EPGEFGVAraújo, Gustavo SilvaNunes, Rodrigo NovinskinPessoa, Marcelo de Sales2018-07-16T18:54:16Z2018-07-16T18:54:16Z2018https://hdl.handle.net/10438/24304The post-2008 financial crisis intensified and improved risk management around the world. From 2014 to 2017, Brazil experienced a severe period of economic crisis culminating in the largest recession in history in 2016. The objective of this work is to measure the impact of this crisis on the credit spread in the secondary market of debentures and the consequent probability of default implicit of these assets. The work analyzes the data of the private credit curve in Brazil for the AAA, AA and A Ratings published daily by ANBIMA based on Nelson and Siegel (1987) parametric model with revision proposed by Diebold and Li (2006). Based on these data, we extracted the daily probability of default implicit using the reduced form of the Duffie and Singleton model (1999) proposed by Xu and Nencioni (2000). This study seeks to identify the perception of agents of the credit market in relation to the increase of risk in the current Brazilian economic scenario. The study concluded that there was a significant increase in the credit spread to the apex in 2016, decreasing during 2017 with the more favorable economic scenario and the fall in interest rates. However, the model data showed high daily volatility. Regarding Probability of Default, there was a great evolution in the perception of credit risk by agents, but there was a certain delay in the pricing of this risk when compared to other economic indicators. In the comparison of the model data with the calculated default probability data for each individual asset, a large difference was observed between assets with the same rating level and the average of the model data. The data of this model can be used in future work to set up portfolios with a better return risk ratio, besides attesting the usefulness of this tool to the economic agents to price their operations and to fulfill their expectations.Os eventos pós-crise financeira de 2008 intensificaram e aperfeiçoaram o gerenciamento de risco em todo mundo. De 2014 a 2017, o Brasil vivenciou um grave período de crise econômica culminando na maior recessão da história em 2016. O objetivo deste trabalho é dimensionar o impacto dessa crise no spread de créditos no mercado secundário de debêntures e na consequente probabilidade de default implícita destes ativos. O trabalho analisa os dados da curva de crédito privado no Brasil para os Ratings AAA, AA e A divulgados diariamente pela ANBIMA com base na modelagem paramétrica de Nelson e Siegel (1987) com revisão proposta por Diebold e Li (2006). Com base nestes dados, extraiu-se a probabilidade de default implícita diária utilizando a forma reduzida do modelo de Duffie e Singleton (1999) proposta conforme Xu e Nencioni (2000). Este estudo busca identificar a percepção dos agentes do mercado de crédito privado em relação ao aumento do risco no atual cenário econômico brasileiro. O trabalho concluiu que houve relevante elevação do spread de crédito até o ápice em 2016, decrescendo ao longo de 2017 com o cenário econômico mais favorável e as quedas das taxas de juros. Porém, os dados do modelo passaram a apresentam alta volatilidade diaria. Em relação a Probabilidade de Default houve grande evolução da percepção de risco de crédito pelos agentes, porém houve um certo atraso na precificação deste risco quando comparado a outros indicadores econômicos. Na comparação dos dados do modelo com os dados de probabilidade de default calculado para cada ativo individualmente, observou-se grande diferença entre ativos com o mesmo nível de rating assim como em relação à média dos dados do modelo. Os dados deste modelo podem ser utilizados num trabalho futuro para montagem de carteiras com uma melhor relação de risco retorno, além de atestar a utilidade desta ferramenta para os agentes econômicos precificarem suas operações e balizarem suas expectativas.porCredit riskCredit spreadEconomic crisisRisco de créditoDebênturesSpread de créditoCrise econômicaEconomiaCréditos - Avaliação de riscosRisco (Economia)DebênturesCrise econômicaEvolução da exposição ao risco de crédito: um estudo empírico do mercado brasileiro de debêntures entre 2014 e 2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis2018-04-04info:eu-repo/semantics/openAccessreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVTEXTMFEE_Dissertação_Jean_Fontes.pdf.txtMFEE_Dissertação_Jean_Fontes.pdf.txtExtracted texttext/plain71268https://repositorio.fgv.br/bitstreams/899eb788-2d55-4b1b-b82c-846d09b23a6c/downloadcd0d1f367825f5cfb107c6a7af4c3c22MD54ORIGINALMFEE_Dissertação_Jean_Fontes.pdfMFEE_Dissertação_Jean_Fontes.pdfPDFapplication/pdf17252759https://repositorio.fgv.br/bitstreams/99e47895-9b15-41d5-bc5a-bad9d26de615/download5fa63ebb1abfe8902987b38b857d341cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/6dd33fe5-98c0-46de-9512-9c79cf891e4c/downloaddfb340242cced38a6cca06c627998fa1MD52THUMBNAILMFEE_Dissertação_Jean_Fontes.pdf.jpgMFEE_Dissertação_Jean_Fontes.pdf.jpgIM Thumbnailimage/jpeg888https://repositorio.fgv.br/bitstreams/25532f8a-28ab-407e-bedf-af4a770f398a/download1b2c9230c309c5110087e61761c551c1MD5310438/243042024-07-16 16:04:56.606open.accessoai:repositorio.fgv.br:10438/24304https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742024-07-16T16:04:56Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K
dc.title.por.fl_str_mv Evolução da exposição ao risco de crédito: um estudo empírico do mercado brasileiro de debêntures entre 2014 e 2017
title Evolução da exposição ao risco de crédito: um estudo empírico do mercado brasileiro de debêntures entre 2014 e 2017
spellingShingle Evolução da exposição ao risco de crédito: um estudo empírico do mercado brasileiro de debêntures entre 2014 e 2017
Fontes, Jean Raphael da Silva de
Credit risk
Credit spread
Economic crisis
Risco de crédito
Debêntures
Spread de crédito
Crise econômica
Economia
Créditos - Avaliação de riscos
Risco (Economia)
Debêntures
Crise econômica
title_short Evolução da exposição ao risco de crédito: um estudo empírico do mercado brasileiro de debêntures entre 2014 e 2017
title_full Evolução da exposição ao risco de crédito: um estudo empírico do mercado brasileiro de debêntures entre 2014 e 2017
title_fullStr Evolução da exposição ao risco de crédito: um estudo empírico do mercado brasileiro de debêntures entre 2014 e 2017
title_full_unstemmed Evolução da exposição ao risco de crédito: um estudo empírico do mercado brasileiro de debêntures entre 2014 e 2017
title_sort Evolução da exposição ao risco de crédito: um estudo empírico do mercado brasileiro de debêntures entre 2014 e 2017
author Fontes, Jean Raphael da Silva de
author_facet Fontes, Jean Raphael da Silva de
author_role author
dc.contributor.unidadefgv.por.fl_str_mv Escolas::EPGE
dc.contributor.affiliation.none.fl_str_mv FGV
dc.contributor.member.none.fl_str_mv Araújo, Gustavo Silva
Nunes, Rodrigo Novinskin
dc.contributor.author.fl_str_mv Fontes, Jean Raphael da Silva de
dc.contributor.advisor1.fl_str_mv Pessoa, Marcelo de Sales
contributor_str_mv Pessoa, Marcelo de Sales
dc.subject.eng.fl_str_mv Credit risk
Credit spread
Economic crisis
topic Credit risk
Credit spread
Economic crisis
Risco de crédito
Debêntures
Spread de crédito
Crise econômica
Economia
Créditos - Avaliação de riscos
Risco (Economia)
Debêntures
Crise econômica
dc.subject.por.fl_str_mv Risco de crédito
Debêntures
Spread de crédito
Crise econômica
dc.subject.area.por.fl_str_mv Economia
dc.subject.bibliodata.por.fl_str_mv Créditos - Avaliação de riscos
Risco (Economia)
Debêntures
Crise econômica
description The post-2008 financial crisis intensified and improved risk management around the world. From 2014 to 2017, Brazil experienced a severe period of economic crisis culminating in the largest recession in history in 2016. The objective of this work is to measure the impact of this crisis on the credit spread in the secondary market of debentures and the consequent probability of default implicit of these assets. The work analyzes the data of the private credit curve in Brazil for the AAA, AA and A Ratings published daily by ANBIMA based on Nelson and Siegel (1987) parametric model with revision proposed by Diebold and Li (2006). Based on these data, we extracted the daily probability of default implicit using the reduced form of the Duffie and Singleton model (1999) proposed by Xu and Nencioni (2000). This study seeks to identify the perception of agents of the credit market in relation to the increase of risk in the current Brazilian economic scenario. The study concluded that there was a significant increase in the credit spread to the apex in 2016, decreasing during 2017 with the more favorable economic scenario and the fall in interest rates. However, the model data showed high daily volatility. Regarding Probability of Default, there was a great evolution in the perception of credit risk by agents, but there was a certain delay in the pricing of this risk when compared to other economic indicators. In the comparison of the model data with the calculated default probability data for each individual asset, a large difference was observed between assets with the same rating level and the average of the model data. The data of this model can be used in future work to set up portfolios with a better return risk ratio, besides attesting the usefulness of this tool to the economic agents to price their operations and to fulfill their expectations.
publishDate 2018
dc.date.accessioned.fl_str_mv 2018-07-16T18:54:16Z
dc.date.available.fl_str_mv 2018-07-16T18:54:16Z
dc.date.issued.fl_str_mv 2018
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10438/24304
url https://hdl.handle.net/10438/24304
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional do FGV (FGV Repositório Digital)
instname:Fundação Getulio Vargas (FGV)
instacron:FGV
instname_str Fundação Getulio Vargas (FGV)
instacron_str FGV
institution FGV
reponame_str Repositório Institucional do FGV (FGV Repositório Digital)
collection Repositório Institucional do FGV (FGV Repositório Digital)
bitstream.url.fl_str_mv https://repositorio.fgv.br/bitstreams/899eb788-2d55-4b1b-b82c-846d09b23a6c/download
https://repositorio.fgv.br/bitstreams/99e47895-9b15-41d5-bc5a-bad9d26de615/download
https://repositorio.fgv.br/bitstreams/6dd33fe5-98c0-46de-9512-9c79cf891e4c/download
https://repositorio.fgv.br/bitstreams/25532f8a-28ab-407e-bedf-af4a770f398a/download
bitstream.checksum.fl_str_mv cd0d1f367825f5cfb107c6a7af4c3c22
5fa63ebb1abfe8902987b38b857d341c
dfb340242cced38a6cca06c627998fa1
1b2c9230c309c5110087e61761c551c1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)
repository.mail.fl_str_mv
_version_ 1827842546709037056