Modelagem da perda esperada com operações de crédito: uma aplicação dos modelos da classe GAMLSS
| Ano de defesa: | 2014 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Link de acesso: | http://hdl.handle.net/10438/11500 |
Resumo: | O mercado de crédito vem ganhando constantemente mais espaço na economia brasileira nos últimos anos. Haja vista isto, o risco de crédito, que tenta medir a perda com operações de crédito, tem fundamental importância e, neste contexto, a perda esperada é, sem dúvida, tema chave. Usualmente, a perda esperada relativa, EL (%), é modelada como o produto dos parâmetros de risco PD (probabilidade de default) e LGD (perda dado o default) pressupondo a independência dos mesmos. Trabalhos recentes mostram que pode haver oportunidade em melhorar o ajuste com a modelagem conjunta da perda, além da retirada da forte premissa de independência dos fatores. O presente trabalho utiliza a distribuição beta inflacionada, modelo BEINF da classe GAMLSS, para o ajuste da perda esperada relativa através de uma base de dados reais disponibilizada pela empresa Serasa Experian. Os resultados mostram que o modelo traz um bom ajuste e que há oportunidade de ganhos em sua utilização na modelagem da EL(%).O mercado de crédito vem ganhando constantemente mais espaço na economia brasileira nos últimos anos. Haja vista isto, o risco de crédito, que tenta medir a perda com operações de crédito, tem fundamental importância e, neste contexto, a perda esperada é, sem dúvida, tema chave. Usualmente, a perda esperada relativa, EL (%), é modelada como o produto dos parâmetros de risco PD (probabilidade de default) e LGD (perda dado o default) pressupondo a independência dos mesmos. Trabalhos recentes mostram que pode haver oportunidade em melhorar o ajuste com a modelagem conjunta da perda, além da retirada da forte premissa de independência dos fatores. O presente trabalho utiliza a distribuição beta inflacionada, modelo BEINF da classe GAMLSS, para o ajuste da perda esperada relativa através de uma base de dados reais disponibilizada pela empresa Serasa Experian. Os resultados mostram que o modelo traz um bom ajuste e que há oportunidade de ganhos em sua utilização na modelagem da EL(%). |
| id |
FGV_c786d54f5ac4753b29114e99b1b7bebb |
|---|---|
| oai_identifier_str |
oai:repositorio.fgv.br:10438/11500 |
| network_acronym_str |
FGV |
| network_name_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
| repository_id_str |
|
| spelling |
Cardoso, Thiago de FreitasEscolas::EESPPinto, Afonso de CamposCosta, Oswaldo Luiz do ValleOliveira, Alexandre de2014-02-27T12:32:27Z2014-02-27T12:32:27Z2014-02-05CARDOSO, Thiago de Freitas. Modelagem da perda esperada com operações de crédito: uma aplicação dos modelos da classe GAMLSS. Dissertação (Mestrado Profissional em Finanças e Economia) - FGV - Fundação Getúlio Vargas, São Paulo, 2014.http://hdl.handle.net/10438/11500O mercado de crédito vem ganhando constantemente mais espaço na economia brasileira nos últimos anos. Haja vista isto, o risco de crédito, que tenta medir a perda com operações de crédito, tem fundamental importância e, neste contexto, a perda esperada é, sem dúvida, tema chave. Usualmente, a perda esperada relativa, EL (%), é modelada como o produto dos parâmetros de risco PD (probabilidade de default) e LGD (perda dado o default) pressupondo a independência dos mesmos. Trabalhos recentes mostram que pode haver oportunidade em melhorar o ajuste com a modelagem conjunta da perda, além da retirada da forte premissa de independência dos fatores. O presente trabalho utiliza a distribuição beta inflacionada, modelo BEINF da classe GAMLSS, para o ajuste da perda esperada relativa através de uma base de dados reais disponibilizada pela empresa Serasa Experian. Os resultados mostram que o modelo traz um bom ajuste e que há oportunidade de ganhos em sua utilização na modelagem da EL(%).O mercado de crédito vem ganhando constantemente mais espaço na economia brasileira nos últimos anos. Haja vista isto, o risco de crédito, que tenta medir a perda com operações de crédito, tem fundamental importância e, neste contexto, a perda esperada é, sem dúvida, tema chave. Usualmente, a perda esperada relativa, EL (%), é modelada como o produto dos parâmetros de risco PD (probabilidade de default) e LGD (perda dado o default) pressupondo a independência dos mesmos. Trabalhos recentes mostram que pode haver oportunidade em melhorar o ajuste com a modelagem conjunta da perda, além da retirada da forte premissa de independência dos fatores. O presente trabalho utiliza a distribuição beta inflacionada, modelo BEINF da classe GAMLSS, para o ajuste da perda esperada relativa através de uma base de dados reais disponibilizada pela empresa Serasa Experian. Os resultados mostram que o modelo traz um bom ajuste e que há oportunidade de ganhos em sua utilização na modelagem da EL(%).The credit market is constantly gaining more space in the Brazilian economy. Credit risk, which attempts to measure the loss on loans, is paramount and in this context, the expected loss is undoubtedly key issue. Usually, the relative expected loss, EL (%), is modeled with the product of the risk parameters PD (probability of default) and LGD (loss given default), assuming their independence. Recently, studies have showed that could be opportunities to improve the fit with the joint modeling of the loss, and the removal of the strong assumption of independence of these factors. This work uses the inflated beta distribution, model BEINF of the GAMLSS class, to adjust the relative expected loss through a real database provided by Serasa Experian.porCredit riskBasel IIExpected loss, modelingBeta regressionBasileia IIPerda esperadaModelagemRegressão betaGAMLSSBEINFEconomiaAdministração de créditoAdministração de riscoComitê de Supervisão Bancária da BasiléiaCréditos - Avaliação de riscosModelos estatísticosModelagem da perda esperada com operações de crédito: uma aplicação dos modelos da classe GAMLSSinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVinfo:eu-repo/semantics/openAccessORIGINALDissertação V2.3.pdfDissertação V2.3.pdfDissertaçãoapplication/pdf8043122https://repositorio.fgv.br/bitstreams/52cf5a55-7cb3-44fb-88b3-f674e82b0c9b/downloadaf3c70ed549fef3e566045da69276b07MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/66977cc9-6870-4880-8c35-8c0accfc4bec/downloaddfb340242cced38a6cca06c627998fa1MD52TEXTDissertação V2.3.pdf.txtDissertação V2.3.pdf.txtExtracted texttext/plain104545https://repositorio.fgv.br/bitstreams/a3329a06-dda9-449a-a17c-fc52fd1f12d6/download60d2e186994f15e490b76e9998ee6661MD57THUMBNAILDissertação V2.3.pdf.jpgDissertação V2.3.pdf.jpgGenerated Thumbnailimage/jpeg2503https://repositorio.fgv.br/bitstreams/d6dfad26-123e-4971-b4a1-380fbcb8ff4f/download6b4e008fda497f2a295d334d353d4643MD5810438/115002023-11-07 10:39:52.914open.accessoai:repositorio.fgv.br:10438/11500https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-07T10:39:52Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K |
| dc.title.por.fl_str_mv |
Modelagem da perda esperada com operações de crédito: uma aplicação dos modelos da classe GAMLSS |
| title |
Modelagem da perda esperada com operações de crédito: uma aplicação dos modelos da classe GAMLSS |
| spellingShingle |
Modelagem da perda esperada com operações de crédito: uma aplicação dos modelos da classe GAMLSS Cardoso, Thiago de Freitas Credit risk Basel II Expected loss, modeling Beta regression Basileia II Perda esperada Modelagem Regressão beta GAMLSS BEINF Economia Administração de crédito Administração de risco Comitê de Supervisão Bancária da Basiléia Créditos - Avaliação de riscos Modelos estatísticos |
| title_short |
Modelagem da perda esperada com operações de crédito: uma aplicação dos modelos da classe GAMLSS |
| title_full |
Modelagem da perda esperada com operações de crédito: uma aplicação dos modelos da classe GAMLSS |
| title_fullStr |
Modelagem da perda esperada com operações de crédito: uma aplicação dos modelos da classe GAMLSS |
| title_full_unstemmed |
Modelagem da perda esperada com operações de crédito: uma aplicação dos modelos da classe GAMLSS |
| title_sort |
Modelagem da perda esperada com operações de crédito: uma aplicação dos modelos da classe GAMLSS |
| author |
Cardoso, Thiago de Freitas |
| author_facet |
Cardoso, Thiago de Freitas |
| author_role |
author |
| dc.contributor.unidadefgv.por.fl_str_mv |
Escolas::EESP |
| dc.contributor.member.none.fl_str_mv |
Pinto, Afonso de Campos Costa, Oswaldo Luiz do Valle |
| dc.contributor.author.fl_str_mv |
Cardoso, Thiago de Freitas |
| dc.contributor.advisor1.fl_str_mv |
Oliveira, Alexandre de |
| contributor_str_mv |
Oliveira, Alexandre de |
| dc.subject.eng.fl_str_mv |
Credit risk Basel II Expected loss, modeling Beta regression |
| topic |
Credit risk Basel II Expected loss, modeling Beta regression Basileia II Perda esperada Modelagem Regressão beta GAMLSS BEINF Economia Administração de crédito Administração de risco Comitê de Supervisão Bancária da Basiléia Créditos - Avaliação de riscos Modelos estatísticos |
| dc.subject.por.fl_str_mv |
Basileia II Perda esperada Modelagem Regressão beta GAMLSS BEINF |
| dc.subject.area.por.fl_str_mv |
Economia |
| dc.subject.bibliodata.por.fl_str_mv |
Administração de crédito Administração de risco Comitê de Supervisão Bancária da Basiléia Créditos - Avaliação de riscos Modelos estatísticos |
| description |
O mercado de crédito vem ganhando constantemente mais espaço na economia brasileira nos últimos anos. Haja vista isto, o risco de crédito, que tenta medir a perda com operações de crédito, tem fundamental importância e, neste contexto, a perda esperada é, sem dúvida, tema chave. Usualmente, a perda esperada relativa, EL (%), é modelada como o produto dos parâmetros de risco PD (probabilidade de default) e LGD (perda dado o default) pressupondo a independência dos mesmos. Trabalhos recentes mostram que pode haver oportunidade em melhorar o ajuste com a modelagem conjunta da perda, além da retirada da forte premissa de independência dos fatores. O presente trabalho utiliza a distribuição beta inflacionada, modelo BEINF da classe GAMLSS, para o ajuste da perda esperada relativa através de uma base de dados reais disponibilizada pela empresa Serasa Experian. Os resultados mostram que o modelo traz um bom ajuste e que há oportunidade de ganhos em sua utilização na modelagem da EL(%).O mercado de crédito vem ganhando constantemente mais espaço na economia brasileira nos últimos anos. Haja vista isto, o risco de crédito, que tenta medir a perda com operações de crédito, tem fundamental importância e, neste contexto, a perda esperada é, sem dúvida, tema chave. Usualmente, a perda esperada relativa, EL (%), é modelada como o produto dos parâmetros de risco PD (probabilidade de default) e LGD (perda dado o default) pressupondo a independência dos mesmos. Trabalhos recentes mostram que pode haver oportunidade em melhorar o ajuste com a modelagem conjunta da perda, além da retirada da forte premissa de independência dos fatores. O presente trabalho utiliza a distribuição beta inflacionada, modelo BEINF da classe GAMLSS, para o ajuste da perda esperada relativa através de uma base de dados reais disponibilizada pela empresa Serasa Experian. Os resultados mostram que o modelo traz um bom ajuste e que há oportunidade de ganhos em sua utilização na modelagem da EL(%). |
| publishDate |
2014 |
| dc.date.accessioned.fl_str_mv |
2014-02-27T12:32:27Z |
| dc.date.available.fl_str_mv |
2014-02-27T12:32:27Z |
| dc.date.issued.fl_str_mv |
2014-02-05 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
CARDOSO, Thiago de Freitas. Modelagem da perda esperada com operações de crédito: uma aplicação dos modelos da classe GAMLSS. Dissertação (Mestrado Profissional em Finanças e Economia) - FGV - Fundação Getúlio Vargas, São Paulo, 2014. |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10438/11500 |
| identifier_str_mv |
CARDOSO, Thiago de Freitas. Modelagem da perda esperada com operações de crédito: uma aplicação dos modelos da classe GAMLSS. Dissertação (Mestrado Profissional em Finanças e Economia) - FGV - Fundação Getúlio Vargas, São Paulo, 2014. |
| url |
http://hdl.handle.net/10438/11500 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional do FGV (FGV Repositório Digital) instname:Fundação Getulio Vargas (FGV) instacron:FGV |
| instname_str |
Fundação Getulio Vargas (FGV) |
| instacron_str |
FGV |
| institution |
FGV |
| reponame_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
| collection |
Repositório Institucional do FGV (FGV Repositório Digital) |
| bitstream.url.fl_str_mv |
https://repositorio.fgv.br/bitstreams/52cf5a55-7cb3-44fb-88b3-f674e82b0c9b/download https://repositorio.fgv.br/bitstreams/66977cc9-6870-4880-8c35-8c0accfc4bec/download https://repositorio.fgv.br/bitstreams/a3329a06-dda9-449a-a17c-fc52fd1f12d6/download https://repositorio.fgv.br/bitstreams/d6dfad26-123e-4971-b4a1-380fbcb8ff4f/download |
| bitstream.checksum.fl_str_mv |
af3c70ed549fef3e566045da69276b07 dfb340242cced38a6cca06c627998fa1 60d2e186994f15e490b76e9998ee6661 6b4e008fda497f2a295d334d353d4643 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV) |
| repository.mail.fl_str_mv |
|
| _version_ |
1827842499576594432 |