Ensaios em matemática aplicada: estimação e trajetórias bootstrap de oferta de sangue e estudo de desempenho de extensões do algoritmo de Programação Dinâmica Dual Estocástica

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Costa, Michelle Bandarra Marques
Orientador(a): Guigues, Vincent Gérard Yannick
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10438/19198
Resumo: We study two topics of applied mathematics. The first topic is devoted to the estimation of blood supply time series and the generation of simulated trajectories. The main goal is to contribute to the literature of stock management of perishable goods. We use Autoregressive Vetors models and two bootstrap techniques when residuals are nonGaussian. We conclude that both techniques are suitable for the problem at hand and are good approaches to enhance predictability of the blood supply time series. The second topic is devoted to the study of different extensions of the Stochastic Dual Dynamic Programming algorithm (SDDP). We compare the computational performance of two algorithms applied to portfolio selection models. The first one is Multicut Decomposition Algorithm (MuDA) which modifies SDDP by including multiple cuts (instead of just one) per stage and per iteration. The second, Cut Selection Multicut Decomposition Algorithms (CuSMuDA), combines MuDA with cut selection strategies and, to the best of our knowledge, has not been proposed so far in the literature. We compare two Cut Selection strategies, CS1 and CS2. We run simulations for 6 different instances of the portfolio problem. Results show the attractiveness of CuSMuDA CS2, which was much quicker than MuDA (between 5,1 and 12,6 times quicker) and much quicker than the other cut selection strategy, CuSMuDA CS1 (between 10,3 and 21,9 times quicker).
id FGV_e91c99d6d7f9375d793dff3f418ea485
oai_identifier_str oai:repositorio.fgv.br:10438/19198
network_acronym_str FGV
network_name_str Repositório Institucional do FGV (FGV Repositório Digital)
repository_id_str
spelling Costa, Michelle Bandarra MarquesEscolas::EMApPizzinga, Adrian HeringerMendes, Eduardo FonsecaGuigues, Vincent Gérard Yannick2017-11-29T13:56:40Z2017-11-29T13:56:40Z2017-09-26http://hdl.handle.net/10438/19198We study two topics of applied mathematics. The first topic is devoted to the estimation of blood supply time series and the generation of simulated trajectories. The main goal is to contribute to the literature of stock management of perishable goods. We use Autoregressive Vetors models and two bootstrap techniques when residuals are nonGaussian. We conclude that both techniques are suitable for the problem at hand and are good approaches to enhance predictability of the blood supply time series. The second topic is devoted to the study of different extensions of the Stochastic Dual Dynamic Programming algorithm (SDDP). We compare the computational performance of two algorithms applied to portfolio selection models. The first one is Multicut Decomposition Algorithm (MuDA) which modifies SDDP by including multiple cuts (instead of just one) per stage and per iteration. The second, Cut Selection Multicut Decomposition Algorithms (CuSMuDA), combines MuDA with cut selection strategies and, to the best of our knowledge, has not been proposed so far in the literature. We compare two Cut Selection strategies, CS1 and CS2. We run simulations for 6 different instances of the portfolio problem. Results show the attractiveness of CuSMuDA CS2, which was much quicker than MuDA (between 5,1 and 12,6 times quicker) and much quicker than the other cut selection strategy, CuSMuDA CS1 (between 10,3 and 21,9 times quicker).Estudamos dois tópicos distintos da matemática aplicada. O primeiro tópico dedica-se à estimação e geração de trajetórias futuras de séries de oferta de sangue, contribuindo para a literatura de gestão de estoque de bens perecíveis. São utilizados modelos de Vetores Auto Regressivos (VAR) e as trajetórias são geradas por duas técnicas distintas de bootstrap presentes na literatura que consideram a não-normalidade dos erros do modelo. Conclui-se que ambas técnicas são adequadas e abordagens possíveis para melhorar a previsibilidade das séries de oferta de sangue. O segundo tópico dedica-se ao estudo de diferentes extensões do algoritmo de Programação Dinâmica Dual Estocástica (Stochastic Dual Dynamic Programming, SDDP). Sob a ótica de modelos de seleção de carteira, são comparados os desempenhos computacionais de dois algoritmos. O primeiro é uma modificação do SDDP que calcula múltiplos cortes por iteração, Multicut Decomposition Algorithm (MuDA). O segundo introduz estratégias de seleção de corte ao MuDA, no que denominamos de Cut Selection Multicut Decomposition Algorithm, CuSMuDA e, até onde sabemos, ainda não foi proposto pela literatura. São comparadas duas estratégias de seleção de corte distintas, CS1 e CS2. Foram rodadas simulações para 6 casos do problema de seleção de carteira e os resultados mostram a atratividade do modelo proposto CuSMuDA CS2, que obteve tempos computacionais entre 5,1 e 12,6 vezes menores que o MuDA e entre 10,3 e 21,9 vezes menores que o CuSMuDA CS1.porStochastic optimizationTime seriesBootstrapProgramação estocásticaOtimização matemáticaAnálise de séries temporaisBootstrap (Programa de computador)MatemáticaProgramação estocásticaAnálise de séries temporaisBootstrap (Programa de computador)Otimização matemáticaEnsaios em matemática aplicada: estimação e trajetórias bootstrap de oferta de sangue e estudo de desempenho de extensões do algoritmo de Programação Dinâmica Dual Estocásticainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVinfo:eu-repo/semantics/openAccessTEXTDissertação EMAp Michelle Bandarra_correcoes_bib.pdf.txtDissertação EMAp Michelle Bandarra_correcoes_bib.pdf.txtExtracted texttext/plain108219https://repositorio.fgv.br/bitstreams/06303b8e-374e-4bed-a129-cb2be36ba643/download748b7c0852ee447c799375c921342d93MD56LICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/4d4ddea8-d3b5-4c21-89b2-e219793ae328/downloaddfb340242cced38a6cca06c627998fa1MD52ORIGINALDissertação EMAp Michelle Bandarra_correcoes_bib.pdfDissertação EMAp Michelle Bandarra_correcoes_bib.pdfapplication/pdf10157315https://repositorio.fgv.br/bitstreams/564ee7b2-3465-457f-a668-9ed8a790a235/downloade5a90c6d05cd1a91dddbb94a00fd0df2MD53THUMBNAILDissertação EMAp Michelle Bandarra_correcoes_bib.pdf.jpgDissertação EMAp Michelle Bandarra_correcoes_bib.pdf.jpgGenerated Thumbnailimage/jpeg3051https://repositorio.fgv.br/bitstreams/bca487fe-6cd0-4ace-850d-2068815d882c/downloadd32566c1c3de807341d5a4ccb2bca78eMD5710438/191982023-11-26 07:26:00.156open.accessoai:repositorio.fgv.br:10438/19198https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-26T07:26Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K
dc.title.por.fl_str_mv Ensaios em matemática aplicada: estimação e trajetórias bootstrap de oferta de sangue e estudo de desempenho de extensões do algoritmo de Programação Dinâmica Dual Estocástica
title Ensaios em matemática aplicada: estimação e trajetórias bootstrap de oferta de sangue e estudo de desempenho de extensões do algoritmo de Programação Dinâmica Dual Estocástica
spellingShingle Ensaios em matemática aplicada: estimação e trajetórias bootstrap de oferta de sangue e estudo de desempenho de extensões do algoritmo de Programação Dinâmica Dual Estocástica
Costa, Michelle Bandarra Marques
Stochastic optimization
Time series
Bootstrap
Programação estocástica
Otimização matemática
Análise de séries temporais
Bootstrap (Programa de computador)
Matemática
Programação estocástica
Análise de séries temporais
Bootstrap (Programa de computador)
Otimização matemática
title_short Ensaios em matemática aplicada: estimação e trajetórias bootstrap de oferta de sangue e estudo de desempenho de extensões do algoritmo de Programação Dinâmica Dual Estocástica
title_full Ensaios em matemática aplicada: estimação e trajetórias bootstrap de oferta de sangue e estudo de desempenho de extensões do algoritmo de Programação Dinâmica Dual Estocástica
title_fullStr Ensaios em matemática aplicada: estimação e trajetórias bootstrap de oferta de sangue e estudo de desempenho de extensões do algoritmo de Programação Dinâmica Dual Estocástica
title_full_unstemmed Ensaios em matemática aplicada: estimação e trajetórias bootstrap de oferta de sangue e estudo de desempenho de extensões do algoritmo de Programação Dinâmica Dual Estocástica
title_sort Ensaios em matemática aplicada: estimação e trajetórias bootstrap de oferta de sangue e estudo de desempenho de extensões do algoritmo de Programação Dinâmica Dual Estocástica
author Costa, Michelle Bandarra Marques
author_facet Costa, Michelle Bandarra Marques
author_role author
dc.contributor.unidadefgv.por.fl_str_mv Escolas::EMAp
dc.contributor.member.none.fl_str_mv Pizzinga, Adrian Heringer
Mendes, Eduardo Fonseca
dc.contributor.author.fl_str_mv Costa, Michelle Bandarra Marques
dc.contributor.advisor1.fl_str_mv Guigues, Vincent Gérard Yannick
contributor_str_mv Guigues, Vincent Gérard Yannick
dc.subject.eng.fl_str_mv Stochastic optimization
Time series
Bootstrap
topic Stochastic optimization
Time series
Bootstrap
Programação estocástica
Otimização matemática
Análise de séries temporais
Bootstrap (Programa de computador)
Matemática
Programação estocástica
Análise de séries temporais
Bootstrap (Programa de computador)
Otimização matemática
dc.subject.por.fl_str_mv Programação estocástica
Otimização matemática
Análise de séries temporais
Bootstrap (Programa de computador)
dc.subject.area.por.fl_str_mv Matemática
dc.subject.bibliodata.por.fl_str_mv Programação estocástica
Análise de séries temporais
Bootstrap (Programa de computador)
dc.subject.bibliodata.none.fl_str_mv Otimização matemática
description We study two topics of applied mathematics. The first topic is devoted to the estimation of blood supply time series and the generation of simulated trajectories. The main goal is to contribute to the literature of stock management of perishable goods. We use Autoregressive Vetors models and two bootstrap techniques when residuals are nonGaussian. We conclude that both techniques are suitable for the problem at hand and are good approaches to enhance predictability of the blood supply time series. The second topic is devoted to the study of different extensions of the Stochastic Dual Dynamic Programming algorithm (SDDP). We compare the computational performance of two algorithms applied to portfolio selection models. The first one is Multicut Decomposition Algorithm (MuDA) which modifies SDDP by including multiple cuts (instead of just one) per stage and per iteration. The second, Cut Selection Multicut Decomposition Algorithms (CuSMuDA), combines MuDA with cut selection strategies and, to the best of our knowledge, has not been proposed so far in the literature. We compare two Cut Selection strategies, CS1 and CS2. We run simulations for 6 different instances of the portfolio problem. Results show the attractiveness of CuSMuDA CS2, which was much quicker than MuDA (between 5,1 and 12,6 times quicker) and much quicker than the other cut selection strategy, CuSMuDA CS1 (between 10,3 and 21,9 times quicker).
publishDate 2017
dc.date.accessioned.fl_str_mv 2017-11-29T13:56:40Z
dc.date.available.fl_str_mv 2017-11-29T13:56:40Z
dc.date.issued.fl_str_mv 2017-09-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10438/19198
url http://hdl.handle.net/10438/19198
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional do FGV (FGV Repositório Digital)
instname:Fundação Getulio Vargas (FGV)
instacron:FGV
instname_str Fundação Getulio Vargas (FGV)
instacron_str FGV
institution FGV
reponame_str Repositório Institucional do FGV (FGV Repositório Digital)
collection Repositório Institucional do FGV (FGV Repositório Digital)
bitstream.url.fl_str_mv https://repositorio.fgv.br/bitstreams/06303b8e-374e-4bed-a129-cb2be36ba643/download
https://repositorio.fgv.br/bitstreams/4d4ddea8-d3b5-4c21-89b2-e219793ae328/download
https://repositorio.fgv.br/bitstreams/564ee7b2-3465-457f-a668-9ed8a790a235/download
https://repositorio.fgv.br/bitstreams/bca487fe-6cd0-4ace-850d-2068815d882c/download
bitstream.checksum.fl_str_mv 748b7c0852ee447c799375c921342d93
dfb340242cced38a6cca06c627998fa1
e5a90c6d05cd1a91dddbb94a00fd0df2
d32566c1c3de807341d5a4ccb2bca78e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)
repository.mail.fl_str_mv
_version_ 1827842417230872576