Aplica??o da Transformada Wavelet em An?lise de Texturas de Gr?ficos de Recorr?ncia para Detec??o de Patologias Lar?ngeas

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Souza, Taciana Ara?jo de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.ifpb.edu.br/jspui/handle/177683/278
Resumo: A an?lise ac?stica do sinal de voz, devido ? sua natureza n?o invasiva e ao baixo custo, tem se mostrado uma eficiente ferramenta para aux?lio ao diagn?stico das desordens vocais provocadas por patologias na laringe. Os gr?ficos apresentam padr?es de larga e pequena escala, cujas varia??es em sua textura representam o comportamento do sinal de voz, proporcionando informa??es acerca do estado de normalidade ou de altera??o na qualidade vocal. Os padr?es de pequena escala podem ser vistos como caracter?sticas de textura e servem como base para uma an?lise quantitativa dos gr?ficos de recorr?ncia. T?cnicas de Processamento Digital de Imagens s?o empregadas para a an?lise da textura contida nos gr?ficos de recorr?ncia, baseada na transformada wavelet bidimensional. A fim de discriminar sinais saud?veis de sinais patol?gicos, s?o extra?dos diversos descritores de texturas dos coeficientes de cada sub-banda obtida pela decomposi??o wavelet bidimensional. Nesta pesquisa, duas abordagens foram aplicadas, as quais se diferenciam pela forma de extra??o dos padr?es representativos dos sinais: extra??o dos descritores de textura diretamente das sub-bandas da transformada wavelet; e extra??o dos descritores de Haralick, a partir da matriz de co-ocorr?ncia. Os sinais de voz foram classificados como saud?veis ou patol?gicos, como tamb?m foi realizada a discrimina??o entre patologias. Paralisia, edema de Reinke e n?dulos nas pregas vocais foram as patologias lar?ngeas consideradas na pesquisa. Os melhores resultados foram obtidos com os descritores de Haralick, empregando redes neurais MLP (Multilayer Perceptron) na classifica??o, em conjunto com o algoritmo de otimiza??o por enxame de part?culas PSO (Particle Swarm Optimization) empregado na sele??o das caracter?sticas mais representativas. O sistema proposto melhorou significativamente a acur?cia na discrimina??o entre patologias, com resultados superiores aos encontrados na literatura, que empregam a an?lise de recorr?ncia.
id IFPB_4b98bdc0acea2cbdf1ab99d90a15f83a
oai_identifier_str oai:repositorio.ifpb.edu.br:177683/278
network_acronym_str IFPB
network_name_str Repositório Institucional do IFPB
repository_id_str
spelling Souza, Taciana Ara?jo de2016-12-06T12:36:21Z2016-12-06T12:36:21Z2016-12-06http://repositorio.ifpb.edu.br/jspui/handle/177683/278A an?lise ac?stica do sinal de voz, devido ? sua natureza n?o invasiva e ao baixo custo, tem se mostrado uma eficiente ferramenta para aux?lio ao diagn?stico das desordens vocais provocadas por patologias na laringe. Os gr?ficos apresentam padr?es de larga e pequena escala, cujas varia??es em sua textura representam o comportamento do sinal de voz, proporcionando informa??es acerca do estado de normalidade ou de altera??o na qualidade vocal. Os padr?es de pequena escala podem ser vistos como caracter?sticas de textura e servem como base para uma an?lise quantitativa dos gr?ficos de recorr?ncia. T?cnicas de Processamento Digital de Imagens s?o empregadas para a an?lise da textura contida nos gr?ficos de recorr?ncia, baseada na transformada wavelet bidimensional. A fim de discriminar sinais saud?veis de sinais patol?gicos, s?o extra?dos diversos descritores de texturas dos coeficientes de cada sub-banda obtida pela decomposi??o wavelet bidimensional. Nesta pesquisa, duas abordagens foram aplicadas, as quais se diferenciam pela forma de extra??o dos padr?es representativos dos sinais: extra??o dos descritores de textura diretamente das sub-bandas da transformada wavelet; e extra??o dos descritores de Haralick, a partir da matriz de co-ocorr?ncia. Os sinais de voz foram classificados como saud?veis ou patol?gicos, como tamb?m foi realizada a discrimina??o entre patologias. Paralisia, edema de Reinke e n?dulos nas pregas vocais foram as patologias lar?ngeas consideradas na pesquisa. Os melhores resultados foram obtidos com os descritores de Haralick, empregando redes neurais MLP (Multilayer Perceptron) na classifica??o, em conjunto com o algoritmo de otimiza??o por enxame de part?culas PSO (Particle Swarm Optimization) empregado na sele??o das caracter?sticas mais representativas. O sistema proposto melhorou significativamente a acur?cia na discrimina??o entre patologias, com resultados superiores aos encontrados na literatura, que empregam a an?lise de recorr?ncia.Submitted by Alex Sandro R?go (alex@ifpb.edu.br) on 2016-12-06T12:35:11Z No. of bitstreams: 1 11- Taciana Araujo de Souza - Aplica??o da Transformada Wavelet em An?lise de Texturas de Gr?ficos de Recorr?ncia.pdf: 3681994 bytes, checksum: ca089bc3877db3b99c310c8d3304967d (MD5)Approved for entry into archive by Alex Sandro R?go (alex@ifpb.edu.br) on 2016-12-06T12:36:21Z (GMT) No. of bitstreams: 1 11- Taciana Araujo de Souza - Aplica??o da Transformada Wavelet em An?lise de Texturas de Gr?ficos de Recorr?ncia.pdf: 3681994 bytes, checksum: ca089bc3877db3b99c310c8d3304967d (MD5)Made available in DSpace on 2016-12-06T12:36:21Z (GMT). No. of bitstreams: 1 11- Taciana Araujo de Souza - Aplica??o da Transformada Wavelet em An?lise de Texturas de Gr?ficos de Recorr?ncia.pdf: 3681994 bytes, checksum: ca089bc3877db3b99c310c8d3304967d (MD5) Previous issue date: 2016-12-06Gr?ficos de recorr?nciaAn?lise de texturaTransformada WaveletOtimiza??o por enxame de part?culasProcessamento digitalSinal de vozAplica??o da Transformada Wavelet em An?lise de Texturas de Gr?ficos de Recorr?ncia para Detec??o de Patologias Lar?ngeasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional do IFPBinstname:Instituto Federal da Paraíba (IFPB)instacron:IFPBinfo:eu-repo/semantics/openAccessDisserta??oIFPBCampus Jo?o PessoaORIGINAL11- Taciana Araujo de Souza - Aplica??o da Transformada Wavelet em An?lise de Texturas de Gr?ficos de Recorr?ncia.pdf11- Taciana Araujo de Souza - Aplica??o da Transformada Wavelet em An?lise de Texturas de Gr?ficos de Recorr?ncia.pdfapplication/pdf3681994http://repositorio.ifpb.edu.br/jspui/bitstream/177683/278/1/11-+Taciana+Araujo+de+Souza+-+Aplica%C3%A7%C3%A3o+da+Transformada+Wavelet+em+An%C3%A1lise+de+Texturas+de+Gr%C3%A1ficos+de+Recorr%C3%AAncia.pdfca089bc3877db3b99c310c8d3304967dMD51177683/2782016-12-06 09:36:21.419oai:repositorio.ifpb.edu.br:177683/278Repositório InstitucionalPUBhttp://repositorio.ifpb.edu.br/oai/requestrepositoriodigital@ifpb.edu.bropendoar:2016-12-06T12:36:21Repositório Institucional do IFPB - Instituto Federal da Paraíba (IFPB)false
dc.title.pt_BR.fl_str_mv Aplica??o da Transformada Wavelet em An?lise de Texturas de Gr?ficos de Recorr?ncia para Detec??o de Patologias Lar?ngeas
title Aplica??o da Transformada Wavelet em An?lise de Texturas de Gr?ficos de Recorr?ncia para Detec??o de Patologias Lar?ngeas
spellingShingle Aplica??o da Transformada Wavelet em An?lise de Texturas de Gr?ficos de Recorr?ncia para Detec??o de Patologias Lar?ngeas
Souza, Taciana Ara?jo de
Gr?ficos de recorr?ncia
An?lise de textura
Transformada Wavelet
Otimiza??o por enxame de part?culas
Processamento digital
Sinal de voz
title_short Aplica??o da Transformada Wavelet em An?lise de Texturas de Gr?ficos de Recorr?ncia para Detec??o de Patologias Lar?ngeas
title_full Aplica??o da Transformada Wavelet em An?lise de Texturas de Gr?ficos de Recorr?ncia para Detec??o de Patologias Lar?ngeas
title_fullStr Aplica??o da Transformada Wavelet em An?lise de Texturas de Gr?ficos de Recorr?ncia para Detec??o de Patologias Lar?ngeas
title_full_unstemmed Aplica??o da Transformada Wavelet em An?lise de Texturas de Gr?ficos de Recorr?ncia para Detec??o de Patologias Lar?ngeas
title_sort Aplica??o da Transformada Wavelet em An?lise de Texturas de Gr?ficos de Recorr?ncia para Detec??o de Patologias Lar?ngeas
author Souza, Taciana Ara?jo de
author_facet Souza, Taciana Ara?jo de
author_role author
dc.contributor.author.fl_str_mv Souza, Taciana Ara?jo de
dc.subject.por.fl_str_mv Gr?ficos de recorr?ncia
An?lise de textura
Transformada Wavelet
Otimiza??o por enxame de part?culas
Processamento digital
Sinal de voz
topic Gr?ficos de recorr?ncia
An?lise de textura
Transformada Wavelet
Otimiza??o por enxame de part?culas
Processamento digital
Sinal de voz
description A an?lise ac?stica do sinal de voz, devido ? sua natureza n?o invasiva e ao baixo custo, tem se mostrado uma eficiente ferramenta para aux?lio ao diagn?stico das desordens vocais provocadas por patologias na laringe. Os gr?ficos apresentam padr?es de larga e pequena escala, cujas varia??es em sua textura representam o comportamento do sinal de voz, proporcionando informa??es acerca do estado de normalidade ou de altera??o na qualidade vocal. Os padr?es de pequena escala podem ser vistos como caracter?sticas de textura e servem como base para uma an?lise quantitativa dos gr?ficos de recorr?ncia. T?cnicas de Processamento Digital de Imagens s?o empregadas para a an?lise da textura contida nos gr?ficos de recorr?ncia, baseada na transformada wavelet bidimensional. A fim de discriminar sinais saud?veis de sinais patol?gicos, s?o extra?dos diversos descritores de texturas dos coeficientes de cada sub-banda obtida pela decomposi??o wavelet bidimensional. Nesta pesquisa, duas abordagens foram aplicadas, as quais se diferenciam pela forma de extra??o dos padr?es representativos dos sinais: extra??o dos descritores de textura diretamente das sub-bandas da transformada wavelet; e extra??o dos descritores de Haralick, a partir da matriz de co-ocorr?ncia. Os sinais de voz foram classificados como saud?veis ou patol?gicos, como tamb?m foi realizada a discrimina??o entre patologias. Paralisia, edema de Reinke e n?dulos nas pregas vocais foram as patologias lar?ngeas consideradas na pesquisa. Os melhores resultados foram obtidos com os descritores de Haralick, empregando redes neurais MLP (Multilayer Perceptron) na classifica??o, em conjunto com o algoritmo de otimiza??o por enxame de part?culas PSO (Particle Swarm Optimization) empregado na sele??o das caracter?sticas mais representativas. O sistema proposto melhorou significativamente a acur?cia na discrimina??o entre patologias, com resultados superiores aos encontrados na literatura, que empregam a an?lise de recorr?ncia.
publishDate 2016
dc.date.accessioned.fl_str_mv 2016-12-06T12:36:21Z
dc.date.available.fl_str_mv 2016-12-06T12:36:21Z
dc.date.issued.fl_str_mv 2016-12-06
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ifpb.edu.br/jspui/handle/177683/278
url http://repositorio.ifpb.edu.br/jspui/handle/177683/278
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional do IFPB
instname:Instituto Federal da Paraíba (IFPB)
instacron:IFPB
instname_str Instituto Federal da Paraíba (IFPB)
instacron_str IFPB
institution IFPB
reponame_str Repositório Institucional do IFPB
collection Repositório Institucional do IFPB
bitstream.url.fl_str_mv http://repositorio.ifpb.edu.br/jspui/bitstream/177683/278/1/11-+Taciana+Araujo+de+Souza+-+Aplica%C3%A7%C3%A3o+da+Transformada+Wavelet+em+An%C3%A1lise+de+Texturas+de+Gr%C3%A1ficos+de+Recorr%C3%AAncia.pdf
bitstream.checksum.fl_str_mv ca089bc3877db3b99c310c8d3304967d
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositório Institucional do IFPB - Instituto Federal da Paraíba (IFPB)
repository.mail.fl_str_mv repositoriodigital@ifpb.edu.br
_version_ 1854303743259967488