Avaliação da atividade muscular de indivíduos com disfunção temporomandibular usando redes neurais artificiais auto-organizadas

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Feliciano, Leandro Paulino lattes
Orientador(a): Politti, Fabiano
Banca de defesa: Politti, Fabiano, Bussadori, Sandra Kalil, Freitas, Diego Galace de
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Nove de Julho
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciências da Reabilitação
Departamento: Saúde
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://bibliotecatede.uninove.br/handle/tede/2589
Resumo: Background: Although many clinicians still use the electromyographic (EMG) signal to assess patients with temporomandibular disorders (TMD), so far, a method for analyzing the EMG signal that demonstrates clear differences between these patients and healthy individuals has not yet been found. Objective: The aim of this study was to evaluate the muscle activity of individuals with TMD using self-organized artificial neural networks. Methods: This was a cross-sectional study, consisting of consecutive samples, consisting of 36 women with TMD and 24 healthy women aged between 18 and 45 years. The EMG signal from the masseter and temporal muscles, both sides, was collected under conditions of rest, chewing (CHW) and maximum habitual intercuspation (MHI). The EMG signal was processed using self-organized artificial neural networks and the movement deviation profile curve (MDP) was calculated in relation to the control group (healthy). Results: The TMD group had a significantly higher MDP value (p < 0.05) with effect size ranging from moderate to high (0.26 to 0.62) for all analyzed muscles (masseter and right and left temporalis) under REST, CHW and MHI condictions. Conclusions: In this study, it was possible to observe significant differences between healthy individuals and individuals with temporomandibular disorders in the electromyographic signal analyzed from self-organized neural networks of the masseter and anterior temporal muscles on both sides, recorded in REP, ISTO and MIH.
id NOVE_0c4a6a4b2557c78cea751e44025540fb
oai_identifier_str oai:localhost:tede/2589
network_acronym_str NOVE
network_name_str Biblioteca Digital de Teses e Dissertações da Uninove
repository_id_str
spelling Politti, FabianoPolitti, FabianoBussadori, Sandra KalilFreitas, Diego Galace dehttp://lattes.cnpq.br/1930360349885164Feliciano, Leandro Paulino2021-10-05T18:06:28Z2021-06-29Feliciano, Leandro Paulino. Avaliação da atividade muscular de indivíduos com disfunção temporomandibular usando redes neurais artificiais auto-organizadas. 2021. 61 f. Dissertação( Programa de Pós-Graduação em Ciências da Reabilitação) - Universidade Nove de Julho, São Paulo.http://bibliotecatede.uninove.br/handle/tede/2589Background: Although many clinicians still use the electromyographic (EMG) signal to assess patients with temporomandibular disorders (TMD), so far, a method for analyzing the EMG signal that demonstrates clear differences between these patients and healthy individuals has not yet been found. Objective: The aim of this study was to evaluate the muscle activity of individuals with TMD using self-organized artificial neural networks. Methods: This was a cross-sectional study, consisting of consecutive samples, consisting of 36 women with TMD and 24 healthy women aged between 18 and 45 years. The EMG signal from the masseter and temporal muscles, both sides, was collected under conditions of rest, chewing (CHW) and maximum habitual intercuspation (MHI). The EMG signal was processed using self-organized artificial neural networks and the movement deviation profile curve (MDP) was calculated in relation to the control group (healthy). Results: The TMD group had a significantly higher MDP value (p < 0.05) with effect size ranging from moderate to high (0.26 to 0.62) for all analyzed muscles (masseter and right and left temporalis) under REST, CHW and MHI condictions. Conclusions: In this study, it was possible to observe significant differences between healthy individuals and individuals with temporomandibular disorders in the electromyographic signal analyzed from self-organized neural networks of the masseter and anterior temporal muscles on both sides, recorded in REP, ISTO and MIH.Introdução: Embora muitos clínicos ainda utilizem o sinal eletromiográfico (EMG) como avaliação de pacientes com disfunção temporomandibular (DTM), até esse momento, ainda não foi encontrado um método de análise do sinal EMG que demonstre diferenças claras entre esses pacientes e indivíduos saudáveis. Objetivo: O objetivo desse estudo foi avaliar a atividade muscular de indivíduos com DTM usando redes neurais artificiais auto-organizadas. Métodos: Esse foi um estudo transversal, composto por amostras consecutivas, constituída de 36 mulheres com DTM e 24 saudáveis com idade entre 18 e 45 anos. O sinal EMG dos músculos masseter e temporal, ambos os lados foram coletados nas condições de repouso (REP), mastigação (ISTO) e máxima intercuspidação habitual (MIH). O sinal EMG foi processado usando redes neurais artificiais auto-organizadas sendo calculado a curva de perfil de desvio de movimento (MDP) em relação ao grupo controle (saudáveis). O grupo com DTM apresentou um valor de MDP significativamente mais alto (p < 0.05) com tamanho do efeito variando entre moderado e alto (0.26 a 0.62) para todos os músculos analisados (masseter e temporal direito e esquerdo) nas condições de REP, ISTO e MIH. Conclusões: Nesse estudo, foi possível observar diferenças significativas entre indivíduos saudáveis e com disfunção temporomandibular no sinal eletromiográfico analisados a partir de redes neurais auto-organizadas, dos músculos masseter e temporal anterior de ambos os lados, gravados em REP, ISTO e MIH.Submitted by Nadir Basilio (nadirsb@uninove.br) on 2021-10-05T18:06:28Z No. of bitstreams: 1 Leandro Paulino Feliciano.pdf: 2061357 bytes, checksum: ee425f660c5190d18592e57c6898a0a1 (MD5)Made available in DSpace on 2021-10-05T18:06:28Z (GMT). No. of bitstreams: 1 Leandro Paulino Feliciano.pdf: 2061357 bytes, checksum: ee425f660c5190d18592e57c6898a0a1 (MD5) Previous issue date: 2021-06-29application/pdfporUniversidade Nove de JulhoPrograma de Pós-Graduação em Ciências da ReabilitaçãoUNINOVEBrasilSaúdeeletromiografiamúsculos da mastigaçãodisfunção temporomandibulararticulação temporomandibularredes neuraiselectromyographymastication musclestemporomandibular disordertemporomandibular jointneural networksCIENCIAS DA SAUDEAvaliação da atividade muscular de indivíduos com disfunção temporomandibular usando redes neurais artificiais auto-organizadasEvaluation of muscle activity in individuals with temporomandibular disorders using self-organized artificial neural networksinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis8765449414823306929600info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da Uninoveinstname:Universidade Nove de Julho (UNINOVE)instacron:UNINOVEORIGINALLeandro Paulino Feliciano.pdfLeandro Paulino Feliciano.pdfapplication/pdf2061357http://localhost:8080/tede/bitstream/tede/2589/2/Leandro+Paulino+Feliciano.pdfee425f660c5190d18592e57c6898a0a1MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://localhost:8080/tede/bitstream/tede/2589/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/25892021-10-05 15:06:28.157oai:localhost:tede/2589Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://bibliotecatede.uninove.br/PRIhttp://bibliotecatede.uninove.br/oai/requestbibliotecatede@uninove.br||bibliotecatede@uninove.bropendoar:2021-10-05T18:06:28Biblioteca Digital de Teses e Dissertações da Uninove - Universidade Nove de Julho (UNINOVE)false
dc.title.por.fl_str_mv Avaliação da atividade muscular de indivíduos com disfunção temporomandibular usando redes neurais artificiais auto-organizadas
dc.title.alternative.eng.fl_str_mv Evaluation of muscle activity in individuals with temporomandibular disorders using self-organized artificial neural networks
title Avaliação da atividade muscular de indivíduos com disfunção temporomandibular usando redes neurais artificiais auto-organizadas
spellingShingle Avaliação da atividade muscular de indivíduos com disfunção temporomandibular usando redes neurais artificiais auto-organizadas
Feliciano, Leandro Paulino
eletromiografia
músculos da mastigação
disfunção temporomandibular
articulação temporomandibular
redes neurais
electromyography
mastication muscles
temporomandibular disorder
temporomandibular joint
neural networks
CIENCIAS DA SAUDE
title_short Avaliação da atividade muscular de indivíduos com disfunção temporomandibular usando redes neurais artificiais auto-organizadas
title_full Avaliação da atividade muscular de indivíduos com disfunção temporomandibular usando redes neurais artificiais auto-organizadas
title_fullStr Avaliação da atividade muscular de indivíduos com disfunção temporomandibular usando redes neurais artificiais auto-organizadas
title_full_unstemmed Avaliação da atividade muscular de indivíduos com disfunção temporomandibular usando redes neurais artificiais auto-organizadas
title_sort Avaliação da atividade muscular de indivíduos com disfunção temporomandibular usando redes neurais artificiais auto-organizadas
author Feliciano, Leandro Paulino
author_facet Feliciano, Leandro Paulino
author_role author
dc.contributor.advisor1.fl_str_mv Politti, Fabiano
dc.contributor.referee1.fl_str_mv Politti, Fabiano
dc.contributor.referee2.fl_str_mv Bussadori, Sandra Kalil
dc.contributor.referee3.fl_str_mv Freitas, Diego Galace de
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/1930360349885164
dc.contributor.author.fl_str_mv Feliciano, Leandro Paulino
contributor_str_mv Politti, Fabiano
Politti, Fabiano
Bussadori, Sandra Kalil
Freitas, Diego Galace de
dc.subject.por.fl_str_mv eletromiografia
músculos da mastigação
disfunção temporomandibular
articulação temporomandibular
redes neurais
topic eletromiografia
músculos da mastigação
disfunção temporomandibular
articulação temporomandibular
redes neurais
electromyography
mastication muscles
temporomandibular disorder
temporomandibular joint
neural networks
CIENCIAS DA SAUDE
dc.subject.eng.fl_str_mv electromyography
mastication muscles
temporomandibular disorder
temporomandibular joint
neural networks
dc.subject.cnpq.fl_str_mv CIENCIAS DA SAUDE
description Background: Although many clinicians still use the electromyographic (EMG) signal to assess patients with temporomandibular disorders (TMD), so far, a method for analyzing the EMG signal that demonstrates clear differences between these patients and healthy individuals has not yet been found. Objective: The aim of this study was to evaluate the muscle activity of individuals with TMD using self-organized artificial neural networks. Methods: This was a cross-sectional study, consisting of consecutive samples, consisting of 36 women with TMD and 24 healthy women aged between 18 and 45 years. The EMG signal from the masseter and temporal muscles, both sides, was collected under conditions of rest, chewing (CHW) and maximum habitual intercuspation (MHI). The EMG signal was processed using self-organized artificial neural networks and the movement deviation profile curve (MDP) was calculated in relation to the control group (healthy). Results: The TMD group had a significantly higher MDP value (p < 0.05) with effect size ranging from moderate to high (0.26 to 0.62) for all analyzed muscles (masseter and right and left temporalis) under REST, CHW and MHI condictions. Conclusions: In this study, it was possible to observe significant differences between healthy individuals and individuals with temporomandibular disorders in the electromyographic signal analyzed from self-organized neural networks of the masseter and anterior temporal muscles on both sides, recorded in REP, ISTO and MIH.
publishDate 2021
dc.date.accessioned.fl_str_mv 2021-10-05T18:06:28Z
dc.date.issued.fl_str_mv 2021-06-29
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Feliciano, Leandro Paulino. Avaliação da atividade muscular de indivíduos com disfunção temporomandibular usando redes neurais artificiais auto-organizadas. 2021. 61 f. Dissertação( Programa de Pós-Graduação em Ciências da Reabilitação) - Universidade Nove de Julho, São Paulo.
dc.identifier.uri.fl_str_mv http://bibliotecatede.uninove.br/handle/tede/2589
identifier_str_mv Feliciano, Leandro Paulino. Avaliação da atividade muscular de indivíduos com disfunção temporomandibular usando redes neurais artificiais auto-organizadas. 2021. 61 f. Dissertação( Programa de Pós-Graduação em Ciências da Reabilitação) - Universidade Nove de Julho, São Paulo.
url http://bibliotecatede.uninove.br/handle/tede/2589
dc.language.iso.fl_str_mv por
language por
dc.relation.cnpq.fl_str_mv 8765449414823306929
dc.relation.confidence.fl_str_mv 600
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Nove de Julho
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciências da Reabilitação
dc.publisher.initials.fl_str_mv UNINOVE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Saúde
publisher.none.fl_str_mv Universidade Nove de Julho
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da Uninove
instname:Universidade Nove de Julho (UNINOVE)
instacron:UNINOVE
instname_str Universidade Nove de Julho (UNINOVE)
instacron_str UNINOVE
institution UNINOVE
reponame_str Biblioteca Digital de Teses e Dissertações da Uninove
collection Biblioteca Digital de Teses e Dissertações da Uninove
bitstream.url.fl_str_mv http://localhost:8080/tede/bitstream/tede/2589/2/Leandro+Paulino+Feliciano.pdf
http://localhost:8080/tede/bitstream/tede/2589/1/license.txt
bitstream.checksum.fl_str_mv ee425f660c5190d18592e57c6898a0a1
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da Uninove - Universidade Nove de Julho (UNINOVE)
repository.mail.fl_str_mv bibliotecatede@uninove.br||bibliotecatede@uninove.br
_version_ 1811017159553318912