Avaliação da atividade muscular de indivíduos com disfunção temporomandibular usando redes neurais artificiais auto-organizadas
Ano de defesa: | 2021 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | , , |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Nove de Julho
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Ciências da Reabilitação
|
Departamento: |
Saúde
|
País: |
Brasil
|
Palavras-chave em Português: | |
Palavras-chave em Inglês: | |
Área do conhecimento CNPq: | |
Link de acesso: | http://bibliotecatede.uninove.br/handle/tede/2589 |
Resumo: | Background: Although many clinicians still use the electromyographic (EMG) signal to assess patients with temporomandibular disorders (TMD), so far, a method for analyzing the EMG signal that demonstrates clear differences between these patients and healthy individuals has not yet been found. Objective: The aim of this study was to evaluate the muscle activity of individuals with TMD using self-organized artificial neural networks. Methods: This was a cross-sectional study, consisting of consecutive samples, consisting of 36 women with TMD and 24 healthy women aged between 18 and 45 years. The EMG signal from the masseter and temporal muscles, both sides, was collected under conditions of rest, chewing (CHW) and maximum habitual intercuspation (MHI). The EMG signal was processed using self-organized artificial neural networks and the movement deviation profile curve (MDP) was calculated in relation to the control group (healthy). Results: The TMD group had a significantly higher MDP value (p < 0.05) with effect size ranging from moderate to high (0.26 to 0.62) for all analyzed muscles (masseter and right and left temporalis) under REST, CHW and MHI condictions. Conclusions: In this study, it was possible to observe significant differences between healthy individuals and individuals with temporomandibular disorders in the electromyographic signal analyzed from self-organized neural networks of the masseter and anterior temporal muscles on both sides, recorded in REP, ISTO and MIH. |
id |
NOVE_0c4a6a4b2557c78cea751e44025540fb |
---|---|
oai_identifier_str |
oai:localhost:tede/2589 |
network_acronym_str |
NOVE |
network_name_str |
Biblioteca Digital de Teses e Dissertações da Uninove |
repository_id_str |
|
spelling |
Politti, FabianoPolitti, FabianoBussadori, Sandra KalilFreitas, Diego Galace dehttp://lattes.cnpq.br/1930360349885164Feliciano, Leandro Paulino2021-10-05T18:06:28Z2021-06-29Feliciano, Leandro Paulino. Avaliação da atividade muscular de indivíduos com disfunção temporomandibular usando redes neurais artificiais auto-organizadas. 2021. 61 f. Dissertação( Programa de Pós-Graduação em Ciências da Reabilitação) - Universidade Nove de Julho, São Paulo.http://bibliotecatede.uninove.br/handle/tede/2589Background: Although many clinicians still use the electromyographic (EMG) signal to assess patients with temporomandibular disorders (TMD), so far, a method for analyzing the EMG signal that demonstrates clear differences between these patients and healthy individuals has not yet been found. Objective: The aim of this study was to evaluate the muscle activity of individuals with TMD using self-organized artificial neural networks. Methods: This was a cross-sectional study, consisting of consecutive samples, consisting of 36 women with TMD and 24 healthy women aged between 18 and 45 years. The EMG signal from the masseter and temporal muscles, both sides, was collected under conditions of rest, chewing (CHW) and maximum habitual intercuspation (MHI). The EMG signal was processed using self-organized artificial neural networks and the movement deviation profile curve (MDP) was calculated in relation to the control group (healthy). Results: The TMD group had a significantly higher MDP value (p < 0.05) with effect size ranging from moderate to high (0.26 to 0.62) for all analyzed muscles (masseter and right and left temporalis) under REST, CHW and MHI condictions. Conclusions: In this study, it was possible to observe significant differences between healthy individuals and individuals with temporomandibular disorders in the electromyographic signal analyzed from self-organized neural networks of the masseter and anterior temporal muscles on both sides, recorded in REP, ISTO and MIH.Introdução: Embora muitos clínicos ainda utilizem o sinal eletromiográfico (EMG) como avaliação de pacientes com disfunção temporomandibular (DTM), até esse momento, ainda não foi encontrado um método de análise do sinal EMG que demonstre diferenças claras entre esses pacientes e indivíduos saudáveis. Objetivo: O objetivo desse estudo foi avaliar a atividade muscular de indivíduos com DTM usando redes neurais artificiais auto-organizadas. Métodos: Esse foi um estudo transversal, composto por amostras consecutivas, constituída de 36 mulheres com DTM e 24 saudáveis com idade entre 18 e 45 anos. O sinal EMG dos músculos masseter e temporal, ambos os lados foram coletados nas condições de repouso (REP), mastigação (ISTO) e máxima intercuspidação habitual (MIH). O sinal EMG foi processado usando redes neurais artificiais auto-organizadas sendo calculado a curva de perfil de desvio de movimento (MDP) em relação ao grupo controle (saudáveis). O grupo com DTM apresentou um valor de MDP significativamente mais alto (p < 0.05) com tamanho do efeito variando entre moderado e alto (0.26 a 0.62) para todos os músculos analisados (masseter e temporal direito e esquerdo) nas condições de REP, ISTO e MIH. Conclusões: Nesse estudo, foi possível observar diferenças significativas entre indivíduos saudáveis e com disfunção temporomandibular no sinal eletromiográfico analisados a partir de redes neurais auto-organizadas, dos músculos masseter e temporal anterior de ambos os lados, gravados em REP, ISTO e MIH.Submitted by Nadir Basilio (nadirsb@uninove.br) on 2021-10-05T18:06:28Z No. of bitstreams: 1 Leandro Paulino Feliciano.pdf: 2061357 bytes, checksum: ee425f660c5190d18592e57c6898a0a1 (MD5)Made available in DSpace on 2021-10-05T18:06:28Z (GMT). No. of bitstreams: 1 Leandro Paulino Feliciano.pdf: 2061357 bytes, checksum: ee425f660c5190d18592e57c6898a0a1 (MD5) Previous issue date: 2021-06-29application/pdfporUniversidade Nove de JulhoPrograma de Pós-Graduação em Ciências da ReabilitaçãoUNINOVEBrasilSaúdeeletromiografiamúsculos da mastigaçãodisfunção temporomandibulararticulação temporomandibularredes neuraiselectromyographymastication musclestemporomandibular disordertemporomandibular jointneural networksCIENCIAS DA SAUDEAvaliação da atividade muscular de indivíduos com disfunção temporomandibular usando redes neurais artificiais auto-organizadasEvaluation of muscle activity in individuals with temporomandibular disorders using self-organized artificial neural networksinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis8765449414823306929600info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da Uninoveinstname:Universidade Nove de Julho (UNINOVE)instacron:UNINOVEORIGINALLeandro Paulino Feliciano.pdfLeandro Paulino Feliciano.pdfapplication/pdf2061357http://localhost:8080/tede/bitstream/tede/2589/2/Leandro+Paulino+Feliciano.pdfee425f660c5190d18592e57c6898a0a1MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://localhost:8080/tede/bitstream/tede/2589/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/25892021-10-05 15:06:28.157oai:localhost:tede/2589Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://bibliotecatede.uninove.br/PRIhttp://bibliotecatede.uninove.br/oai/requestbibliotecatede@uninove.br||bibliotecatede@uninove.bropendoar:2021-10-05T18:06:28Biblioteca Digital de Teses e Dissertações da Uninove - Universidade Nove de Julho (UNINOVE)false |
dc.title.por.fl_str_mv |
Avaliação da atividade muscular de indivíduos com disfunção temporomandibular usando redes neurais artificiais auto-organizadas |
dc.title.alternative.eng.fl_str_mv |
Evaluation of muscle activity in individuals with temporomandibular disorders using self-organized artificial neural networks |
title |
Avaliação da atividade muscular de indivíduos com disfunção temporomandibular usando redes neurais artificiais auto-organizadas |
spellingShingle |
Avaliação da atividade muscular de indivíduos com disfunção temporomandibular usando redes neurais artificiais auto-organizadas Feliciano, Leandro Paulino eletromiografia músculos da mastigação disfunção temporomandibular articulação temporomandibular redes neurais electromyography mastication muscles temporomandibular disorder temporomandibular joint neural networks CIENCIAS DA SAUDE |
title_short |
Avaliação da atividade muscular de indivíduos com disfunção temporomandibular usando redes neurais artificiais auto-organizadas |
title_full |
Avaliação da atividade muscular de indivíduos com disfunção temporomandibular usando redes neurais artificiais auto-organizadas |
title_fullStr |
Avaliação da atividade muscular de indivíduos com disfunção temporomandibular usando redes neurais artificiais auto-organizadas |
title_full_unstemmed |
Avaliação da atividade muscular de indivíduos com disfunção temporomandibular usando redes neurais artificiais auto-organizadas |
title_sort |
Avaliação da atividade muscular de indivíduos com disfunção temporomandibular usando redes neurais artificiais auto-organizadas |
author |
Feliciano, Leandro Paulino |
author_facet |
Feliciano, Leandro Paulino |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Politti, Fabiano |
dc.contributor.referee1.fl_str_mv |
Politti, Fabiano |
dc.contributor.referee2.fl_str_mv |
Bussadori, Sandra Kalil |
dc.contributor.referee3.fl_str_mv |
Freitas, Diego Galace de |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/1930360349885164 |
dc.contributor.author.fl_str_mv |
Feliciano, Leandro Paulino |
contributor_str_mv |
Politti, Fabiano Politti, Fabiano Bussadori, Sandra Kalil Freitas, Diego Galace de |
dc.subject.por.fl_str_mv |
eletromiografia músculos da mastigação disfunção temporomandibular articulação temporomandibular redes neurais |
topic |
eletromiografia músculos da mastigação disfunção temporomandibular articulação temporomandibular redes neurais electromyography mastication muscles temporomandibular disorder temporomandibular joint neural networks CIENCIAS DA SAUDE |
dc.subject.eng.fl_str_mv |
electromyography mastication muscles temporomandibular disorder temporomandibular joint neural networks |
dc.subject.cnpq.fl_str_mv |
CIENCIAS DA SAUDE |
description |
Background: Although many clinicians still use the electromyographic (EMG) signal to assess patients with temporomandibular disorders (TMD), so far, a method for analyzing the EMG signal that demonstrates clear differences between these patients and healthy individuals has not yet been found. Objective: The aim of this study was to evaluate the muscle activity of individuals with TMD using self-organized artificial neural networks. Methods: This was a cross-sectional study, consisting of consecutive samples, consisting of 36 women with TMD and 24 healthy women aged between 18 and 45 years. The EMG signal from the masseter and temporal muscles, both sides, was collected under conditions of rest, chewing (CHW) and maximum habitual intercuspation (MHI). The EMG signal was processed using self-organized artificial neural networks and the movement deviation profile curve (MDP) was calculated in relation to the control group (healthy). Results: The TMD group had a significantly higher MDP value (p < 0.05) with effect size ranging from moderate to high (0.26 to 0.62) for all analyzed muscles (masseter and right and left temporalis) under REST, CHW and MHI condictions. Conclusions: In this study, it was possible to observe significant differences between healthy individuals and individuals with temporomandibular disorders in the electromyographic signal analyzed from self-organized neural networks of the masseter and anterior temporal muscles on both sides, recorded in REP, ISTO and MIH. |
publishDate |
2021 |
dc.date.accessioned.fl_str_mv |
2021-10-05T18:06:28Z |
dc.date.issued.fl_str_mv |
2021-06-29 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
Feliciano, Leandro Paulino. Avaliação da atividade muscular de indivíduos com disfunção temporomandibular usando redes neurais artificiais auto-organizadas. 2021. 61 f. Dissertação( Programa de Pós-Graduação em Ciências da Reabilitação) - Universidade Nove de Julho, São Paulo. |
dc.identifier.uri.fl_str_mv |
http://bibliotecatede.uninove.br/handle/tede/2589 |
identifier_str_mv |
Feliciano, Leandro Paulino. Avaliação da atividade muscular de indivíduos com disfunção temporomandibular usando redes neurais artificiais auto-organizadas. 2021. 61 f. Dissertação( Programa de Pós-Graduação em Ciências da Reabilitação) - Universidade Nove de Julho, São Paulo. |
url |
http://bibliotecatede.uninove.br/handle/tede/2589 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.cnpq.fl_str_mv |
8765449414823306929 |
dc.relation.confidence.fl_str_mv |
600 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Nove de Julho |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Ciências da Reabilitação |
dc.publisher.initials.fl_str_mv |
UNINOVE |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Saúde |
publisher.none.fl_str_mv |
Universidade Nove de Julho |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da Uninove instname:Universidade Nove de Julho (UNINOVE) instacron:UNINOVE |
instname_str |
Universidade Nove de Julho (UNINOVE) |
instacron_str |
UNINOVE |
institution |
UNINOVE |
reponame_str |
Biblioteca Digital de Teses e Dissertações da Uninove |
collection |
Biblioteca Digital de Teses e Dissertações da Uninove |
bitstream.url.fl_str_mv |
http://localhost:8080/tede/bitstream/tede/2589/2/Leandro+Paulino+Feliciano.pdf http://localhost:8080/tede/bitstream/tede/2589/1/license.txt |
bitstream.checksum.fl_str_mv |
ee425f660c5190d18592e57c6898a0a1 bd3efa91386c1718a7f26a329fdcb468 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da Uninove - Universidade Nove de Julho (UNINOVE) |
repository.mail.fl_str_mv |
bibliotecatede@uninove.br||bibliotecatede@uninove.br |
_version_ |
1811017159553318912 |