[pt] OTIMIZAÇÃO DE ALTERNATIVAS PARA DESENVOLVIMENTO DE CAMPO DE PETRÓLEO UTILIZANDO COMPUTAÇÃO EVOLUCIONÁRIA

Detalhes bibliográficos
Ano de defesa: 2003
Autor(a) principal: LUCIANA FALETTI ALMEIDA
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=3522&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=3522&idi=2
http://doi.org/10.17771/PUCRio.acad.3522
Resumo: [pt] Esta dissertação investiga um sistema baseado em algoritmos genéticos e algoritmos culturais, aplicado ao processo de desenvolvimento de um campo de petróleo. O desenvolvimento de um campo de petróleo consiste, neste caso, da disposição de poços num reservatório petrolífero, já conhecido e delimitado, que permita maximizar o Valor Presente Líquido. Uma disposição de poços define a quantidade e posição de poços produtores e injetores e do tipo de poço (horizontalou vertical) a serem empregados no processo de exploração. O objetivo do trabalho é avaliar o desempenho de Algoritmos Genéticos e Algoritmos Culturais como métodos de apoio à decisão na otimização de alternativas de produção em reservatórios petrolíferos. Determinar a localização de novos poços de petróleo em um reservatório é um problema complexo que depende de propriedades do reservatório e critérios econômicos, entre outros fatores. Para que um processo de otimização possa ser aplicado nesse problema, é necessário definir uma função objetivo a ser minimizada ou maximizada pelo processo. No problema em questão, a função objetivo a ser maximizada é o Valor Presente Líquido (VPL). Para se estabelecer o VPL, subtrai-se os gastos com a exploração do valor correspondente ao volume de petróleo estimado da reserva. Devido à complexidade do perfil de produção de petróleo, exige-se a utilização de simuladores de reservatório para esta estimativa. Deste modo, um simulador de reservatórios é parte integrante da função de avaliação. O trabalho de pesquisa foi desenvolvido em quatro etapas: um estudo sobre a área de exploração de petróleo; um estudo dos modelos da inteligência computacional empregados nesta área; a definição e implementação de um modelo genético e cultural para o desenvolvimento de campo petrolífero e o estudo de caso. O estudo sobre a área de exploração de campo de petróleo envolveu a teoria necessária para a construção da função objetivo. No estudo sobre as técnicas de inteligência computacional definiu-se os conceitos principais sobre Algoritmo Genético e Algoritmo Cultural empregados nesta dissertação. A modelagem de um Algoritmo Genético e Cultural constitui no emprego dos mesmos, para que dado um reservatório petrolífero, o sistema tenha condições de reconhecê-lo e desenvolvê-lo, ou seja, encontrar a configuração (quantidade, localização e tipo de poços) que atinja um maior Valor Presente Líquido. Os resultados obtidos neste trabalho indicam a viabilidade da utilização de Algoritmos Genéticos e Algoritmos Culturais no desenvolvimento de campos de petróleo.
id PUC_RIO-1_37122f12a5b2fcf20a93151f07bb4b96
oai_identifier_str oai:MAXWELL.puc-rio.br:3522
network_acronym_str PUC_RIO-1
network_name_str Repositório Institucional da PUC-RIO (Projeto Maxwell)
repository_id_str
spelling [pt] OTIMIZAÇÃO DE ALTERNATIVAS PARA DESENVOLVIMENTO DE CAMPO DE PETRÓLEO UTILIZANDO COMPUTAÇÃO EVOLUCIONÁRIA [en] THE OPTIMIZATION OF PETROLEUM FIELD EXPLORATION ALTERNATIVES USING EVOLUTIONARY COMPUTATION [pt] ALGORITMO GENETICO[pt] DESENVOLVIMENTO DE CAMPOS DE PETROLEO[pt] ALGORITMOS CULTURAIS[en] GENETIC ALGORITHM[en] RESERVOIR DEVELOPMENT[en] CULTURAL ALGORITHMS[pt] Esta dissertação investiga um sistema baseado em algoritmos genéticos e algoritmos culturais, aplicado ao processo de desenvolvimento de um campo de petróleo. O desenvolvimento de um campo de petróleo consiste, neste caso, da disposição de poços num reservatório petrolífero, já conhecido e delimitado, que permita maximizar o Valor Presente Líquido. Uma disposição de poços define a quantidade e posição de poços produtores e injetores e do tipo de poço (horizontalou vertical) a serem empregados no processo de exploração. O objetivo do trabalho é avaliar o desempenho de Algoritmos Genéticos e Algoritmos Culturais como métodos de apoio à decisão na otimização de alternativas de produção em reservatórios petrolíferos. Determinar a localização de novos poços de petróleo em um reservatório é um problema complexo que depende de propriedades do reservatório e critérios econômicos, entre outros fatores. Para que um processo de otimização possa ser aplicado nesse problema, é necessário definir uma função objetivo a ser minimizada ou maximizada pelo processo. No problema em questão, a função objetivo a ser maximizada é o Valor Presente Líquido (VPL). Para se estabelecer o VPL, subtrai-se os gastos com a exploração do valor correspondente ao volume de petróleo estimado da reserva. Devido à complexidade do perfil de produção de petróleo, exige-se a utilização de simuladores de reservatório para esta estimativa. Deste modo, um simulador de reservatórios é parte integrante da função de avaliação. O trabalho de pesquisa foi desenvolvido em quatro etapas: um estudo sobre a área de exploração de petróleo; um estudo dos modelos da inteligência computacional empregados nesta área; a definição e implementação de um modelo genético e cultural para o desenvolvimento de campo petrolífero e o estudo de caso. O estudo sobre a área de exploração de campo de petróleo envolveu a teoria necessária para a construção da função objetivo. No estudo sobre as técnicas de inteligência computacional definiu-se os conceitos principais sobre Algoritmo Genético e Algoritmo Cultural empregados nesta dissertação. A modelagem de um Algoritmo Genético e Cultural constitui no emprego dos mesmos, para que dado um reservatório petrolífero, o sistema tenha condições de reconhecê-lo e desenvolvê-lo, ou seja, encontrar a configuração (quantidade, localização e tipo de poços) que atinja um maior Valor Presente Líquido. Os resultados obtidos neste trabalho indicam a viabilidade da utilização de Algoritmos Genéticos e Algoritmos Culturais no desenvolvimento de campos de petróleo.[en] This dissertation investigates a system based in genetic algorithms and cultural algorithms, applied to the development process of a petroleum field. The development of a petroleum field consists in the placement of wells in an already known and delimited petroleum reservoir, which allows maximizing the Net Present Value. A placement of wells defines the quantity and position of the producing wells, the injecting wells, and the wells type (horizontal or vertical) to be used in the exploration process. The objective of this work is to evaluate the performance of Genetic Algorithms and Cultural Algorithms as decision support methods on the optimization of production alternatives in petroleum reservoirs. Determining the new petroleum wells location in a reservoir is a complex problem that depends on the properties of the reservoir and on economic criteria, among other factors. In order to an optimization process to be applied to this problem, it s necessary to define a target function to be minimized or maximized by the process. In the given problem, the target function to be maximized is the Net Present Value (NPV). In order to establish the NPV, the exploration cost correspondent to the estimated reservoir petroleum volume is deducted. The complexity of the petroleum s production profile implies on the use of reservoirs simulators for this estimation. In this way, a reservoir simulator is an integrant part of the evaluation function. The research work was developed in four phases: a study about the petroleum exploration field; a study about the applied computational intelligence models in this area; the definition and implementation of a genetic and cultural model for the development of petroliferous fields and the case study. The study about the petroleum exploration field involved all the necessary theory for the building of the target function. In the study about the computational intelligence techniques, the main concepts about the Genetic Algorithms and Cultural Algorithms applied in this dissertation were defined. The modeling of Genetic and Cultural Algorithms consisted in applying them so that, given a petroleum reservoir, the system is capable of evolve and find configurations (quantity, location and wells type) that achieve greater Net Present Values. The results obtained in this work, indicate that the use of Genetic Algorithms and Cultural Algorithms in the development of petroleum fields is a promising alternative.MAXWELLMARLEY MARIA BERNARDES REBUZZI VELLASCOMARLEY MARIA BERNARDES REBUZZI VELLASCOMARCO AURELIO CAVALCANTI PACHECOMARCO AURELIO CAVALCANTI PACHECOMARCO AURELIO CAVALCANTI PACHECOLUCIANA FALETTI ALMEIDA2003-05-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttps://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=3522&idi=1https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=3522&idi=2http://doi.org/10.17771/PUCRio.acad.3522porreponame:Repositório Institucional da PUC-RIO (Projeto Maxwell)instname:Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)instacron:PUC_RIOinfo:eu-repo/semantics/openAccess2019-02-20T00:00:00Zoai:MAXWELL.puc-rio.br:3522Repositório InstitucionalPRIhttps://www.maxwell.vrac.puc-rio.br/ibict.phpopendoar:5342019-02-20T00:00Repositório Institucional da PUC-RIO (Projeto Maxwell) - Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)false
dc.title.none.fl_str_mv [pt] OTIMIZAÇÃO DE ALTERNATIVAS PARA DESENVOLVIMENTO DE CAMPO DE PETRÓLEO UTILIZANDO COMPUTAÇÃO EVOLUCIONÁRIA
[en] THE OPTIMIZATION OF PETROLEUM FIELD EXPLORATION ALTERNATIVES USING EVOLUTIONARY COMPUTATION
title [pt] OTIMIZAÇÃO DE ALTERNATIVAS PARA DESENVOLVIMENTO DE CAMPO DE PETRÓLEO UTILIZANDO COMPUTAÇÃO EVOLUCIONÁRIA
spellingShingle [pt] OTIMIZAÇÃO DE ALTERNATIVAS PARA DESENVOLVIMENTO DE CAMPO DE PETRÓLEO UTILIZANDO COMPUTAÇÃO EVOLUCIONÁRIA
LUCIANA FALETTI ALMEIDA
[pt] ALGORITMO GENETICO
[pt] DESENVOLVIMENTO DE CAMPOS DE PETROLEO
[pt] ALGORITMOS CULTURAIS
[en] GENETIC ALGORITHM
[en] RESERVOIR DEVELOPMENT
[en] CULTURAL ALGORITHMS
title_short [pt] OTIMIZAÇÃO DE ALTERNATIVAS PARA DESENVOLVIMENTO DE CAMPO DE PETRÓLEO UTILIZANDO COMPUTAÇÃO EVOLUCIONÁRIA
title_full [pt] OTIMIZAÇÃO DE ALTERNATIVAS PARA DESENVOLVIMENTO DE CAMPO DE PETRÓLEO UTILIZANDO COMPUTAÇÃO EVOLUCIONÁRIA
title_fullStr [pt] OTIMIZAÇÃO DE ALTERNATIVAS PARA DESENVOLVIMENTO DE CAMPO DE PETRÓLEO UTILIZANDO COMPUTAÇÃO EVOLUCIONÁRIA
title_full_unstemmed [pt] OTIMIZAÇÃO DE ALTERNATIVAS PARA DESENVOLVIMENTO DE CAMPO DE PETRÓLEO UTILIZANDO COMPUTAÇÃO EVOLUCIONÁRIA
title_sort [pt] OTIMIZAÇÃO DE ALTERNATIVAS PARA DESENVOLVIMENTO DE CAMPO DE PETRÓLEO UTILIZANDO COMPUTAÇÃO EVOLUCIONÁRIA
author LUCIANA FALETTI ALMEIDA
author_facet LUCIANA FALETTI ALMEIDA
author_role author
dc.contributor.none.fl_str_mv MARLEY MARIA BERNARDES REBUZZI VELLASCO
MARLEY MARIA BERNARDES REBUZZI VELLASCO
MARCO AURELIO CAVALCANTI PACHECO
MARCO AURELIO CAVALCANTI PACHECO
MARCO AURELIO CAVALCANTI PACHECO
dc.contributor.author.fl_str_mv LUCIANA FALETTI ALMEIDA
dc.subject.por.fl_str_mv [pt] ALGORITMO GENETICO
[pt] DESENVOLVIMENTO DE CAMPOS DE PETROLEO
[pt] ALGORITMOS CULTURAIS
[en] GENETIC ALGORITHM
[en] RESERVOIR DEVELOPMENT
[en] CULTURAL ALGORITHMS
topic [pt] ALGORITMO GENETICO
[pt] DESENVOLVIMENTO DE CAMPOS DE PETROLEO
[pt] ALGORITMOS CULTURAIS
[en] GENETIC ALGORITHM
[en] RESERVOIR DEVELOPMENT
[en] CULTURAL ALGORITHMS
description [pt] Esta dissertação investiga um sistema baseado em algoritmos genéticos e algoritmos culturais, aplicado ao processo de desenvolvimento de um campo de petróleo. O desenvolvimento de um campo de petróleo consiste, neste caso, da disposição de poços num reservatório petrolífero, já conhecido e delimitado, que permita maximizar o Valor Presente Líquido. Uma disposição de poços define a quantidade e posição de poços produtores e injetores e do tipo de poço (horizontalou vertical) a serem empregados no processo de exploração. O objetivo do trabalho é avaliar o desempenho de Algoritmos Genéticos e Algoritmos Culturais como métodos de apoio à decisão na otimização de alternativas de produção em reservatórios petrolíferos. Determinar a localização de novos poços de petróleo em um reservatório é um problema complexo que depende de propriedades do reservatório e critérios econômicos, entre outros fatores. Para que um processo de otimização possa ser aplicado nesse problema, é necessário definir uma função objetivo a ser minimizada ou maximizada pelo processo. No problema em questão, a função objetivo a ser maximizada é o Valor Presente Líquido (VPL). Para se estabelecer o VPL, subtrai-se os gastos com a exploração do valor correspondente ao volume de petróleo estimado da reserva. Devido à complexidade do perfil de produção de petróleo, exige-se a utilização de simuladores de reservatório para esta estimativa. Deste modo, um simulador de reservatórios é parte integrante da função de avaliação. O trabalho de pesquisa foi desenvolvido em quatro etapas: um estudo sobre a área de exploração de petróleo; um estudo dos modelos da inteligência computacional empregados nesta área; a definição e implementação de um modelo genético e cultural para o desenvolvimento de campo petrolífero e o estudo de caso. O estudo sobre a área de exploração de campo de petróleo envolveu a teoria necessária para a construção da função objetivo. No estudo sobre as técnicas de inteligência computacional definiu-se os conceitos principais sobre Algoritmo Genético e Algoritmo Cultural empregados nesta dissertação. A modelagem de um Algoritmo Genético e Cultural constitui no emprego dos mesmos, para que dado um reservatório petrolífero, o sistema tenha condições de reconhecê-lo e desenvolvê-lo, ou seja, encontrar a configuração (quantidade, localização e tipo de poços) que atinja um maior Valor Presente Líquido. Os resultados obtidos neste trabalho indicam a viabilidade da utilização de Algoritmos Genéticos e Algoritmos Culturais no desenvolvimento de campos de petróleo.
publishDate 2003
dc.date.none.fl_str_mv 2003-05-21
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=3522&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=3522&idi=2
http://doi.org/10.17771/PUCRio.acad.3522
url https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=3522&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=3522&idi=2
http://doi.org/10.17771/PUCRio.acad.3522
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv MAXWELL
publisher.none.fl_str_mv MAXWELL
dc.source.none.fl_str_mv reponame:Repositório Institucional da PUC-RIO (Projeto Maxwell)
instname:Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
instacron:PUC_RIO
instname_str Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
instacron_str PUC_RIO
institution PUC_RIO
reponame_str Repositório Institucional da PUC-RIO (Projeto Maxwell)
collection Repositório Institucional da PUC-RIO (Projeto Maxwell)
repository.name.fl_str_mv Repositório Institucional da PUC-RIO (Projeto Maxwell) - Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
repository.mail.fl_str_mv
_version_ 1856395879300202496