[en] MOORING PATTERN OPTIMIZATION USING GENETIC ALGORITHMS
| Ano de defesa: | 2006 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
MAXWELL
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8242&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8242&idi=2 http://doi.org/10.17771/PUCRio.acad.8242 |
Resumo: | [pt] Com o crescimento da demanda de óleo, as empresas de petróleo têm sido forçadas a explorar novas reservas em águas cada vez mais profundas. Em função do alto custo das operações de exploração de petróleo, torna-se necessário o desenvolvimento de tecnologias capazes de aumentar a eficiência e reduzir os custos envolvidos. Neste contexto, a utilização de unidades flutuantes torna-se cada vez mais freqüente em águas profundas. O posicionamento das unidades flutuantes durante as operações de exploração de óleo é garantido pelas linhas de ancoragem, que são estruturas flexíveis compostas, geralmente, por trechos de aço, amarras e/ou cabos sintéticos. O presente trabalho apresenta o desenvolvimento de um Algoritmo Genético (AG) para solucionar o problema da disposição das linhas de ancoragem de unidades flutuantes utilizadas nas operações de exploração de petróleo. A distribuição das linhas de ancoragem é um dos fatores que influencia diretamente nos deslocamentos (offsets) sofridos pelas unidades flutuantes quando submetidas às ações ambientais, como ventos, ondas e correntes. Desta forma, o AG busca uma disposição ótima das linhas de ancoragem cujo objetivo final é a minimização dos deslocamentos da unidade flutuante. Os operadores básicos utilizados por este algoritmo são mutação, crossover e seleção. Neste trabalho, foi adotada a técnica steady-state, que só efetua a substituição de um ou dois indivíduos por geração. O cálculo da posição de equilíbrio estático da unidade flutuante é feito aplicando-se a equação da catenária para cada linha de ancoragem com o objetivo de se obterem as forças de restauração na unidade, e empregando-se um processo iterativo para calcular a sua posição final de equilíbrio. |
| id |
PUC_RIO-1_a2cd81c4e036620e25942ec5c24936b9 |
|---|---|
| oai_identifier_str |
oai:MAXWELL.puc-rio.br:8242 |
| network_acronym_str |
PUC_RIO-1 |
| network_name_str |
Repositório Institucional da PUC-RIO (Projeto Maxwell) |
| repository_id_str |
|
| spelling |
[en] MOORING PATTERN OPTIMIZATION USING GENETIC ALGORITHMS [pt] OTIMIZAÇÃO DA DISPOSIÇÃO DE LINHAS DE ANCORAGEM UTILIZANDO ALGORITMOS GENÉTICOS [pt] OTIMIZACAO DE ESTRUTURAS[pt] LINHAS DE ANCORAGEM[pt] ALGORITMO GENETICO[en] STRUCTURAL OPTIMIZATION[en] MOORING PATTERN[en] GENETIC ALGORITHM[pt] Com o crescimento da demanda de óleo, as empresas de petróleo têm sido forçadas a explorar novas reservas em águas cada vez mais profundas. Em função do alto custo das operações de exploração de petróleo, torna-se necessário o desenvolvimento de tecnologias capazes de aumentar a eficiência e reduzir os custos envolvidos. Neste contexto, a utilização de unidades flutuantes torna-se cada vez mais freqüente em águas profundas. O posicionamento das unidades flutuantes durante as operações de exploração de óleo é garantido pelas linhas de ancoragem, que são estruturas flexíveis compostas, geralmente, por trechos de aço, amarras e/ou cabos sintéticos. O presente trabalho apresenta o desenvolvimento de um Algoritmo Genético (AG) para solucionar o problema da disposição das linhas de ancoragem de unidades flutuantes utilizadas nas operações de exploração de petróleo. A distribuição das linhas de ancoragem é um dos fatores que influencia diretamente nos deslocamentos (offsets) sofridos pelas unidades flutuantes quando submetidas às ações ambientais, como ventos, ondas e correntes. Desta forma, o AG busca uma disposição ótima das linhas de ancoragem cujo objetivo final é a minimização dos deslocamentos da unidade flutuante. Os operadores básicos utilizados por este algoritmo são mutação, crossover e seleção. Neste trabalho, foi adotada a técnica steady-state, que só efetua a substituição de um ou dois indivíduos por geração. O cálculo da posição de equilíbrio estático da unidade flutuante é feito aplicando-se a equação da catenária para cada linha de ancoragem com o objetivo de se obterem as forças de restauração na unidade, e empregando-se um processo iterativo para calcular a sua posição final de equilíbrio.[en] With the increasing demand for oil, oil companies have been forced to exploit new fields in deep waters. Due to the high cost of oil exploitation operations, the development of technologies capable of increasing efficiency and reducing costs is crucial. In this context, the use of floating units in deep waters has become more frequent. The positioning of the floating units during oil exploitation operations is done using mooring lines, which are flexible structures usually made of steel wire, steel chain and/or synthetic cables. This work presents the development of a Genetic Algorithm (GA) procedure to solve the problem of the mooring pattern of floating units used in oil exploitation operations. The distribution of mooring lines is one of the factors that directly influence the displacements (offsets) suffered by floating units when subjected to environmental conditions such as winds, waves and currents. Thus, the GA seeks an optimum distribution of the mooring lines whose final goal is to minimize the units´ displacements. The basic operators used in this algorithm are mutation, crossover and selection. In the present work, the steady- state GA has been implemented, which performs the substitution of only one or two individuals per generation. The computation of the floating unit´s static equilibrium position is accomplished by applying the catenary equilibrium equation to each mooring line in order to obtain the out-of-balance forces on the unit, and by using an iterative process to compute the final unit equilibrium position.MAXWELLLUIZ FERNANDO CAMPOS RAMOS MARTHAALONSO JOAQUIN JUVINAO CARBONO2006-05-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttps://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8242&idi=1https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8242&idi=2http://doi.org/10.17771/PUCRio.acad.8242porreponame:Repositório Institucional da PUC-RIO (Projeto Maxwell)instname:Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)instacron:PUC_RIOinfo:eu-repo/semantics/openAccess2018-10-19T00:00:00Zoai:MAXWELL.puc-rio.br:8242Repositório InstitucionalPRIhttps://www.maxwell.vrac.puc-rio.br/ibict.phpopendoar:5342018-10-19T00:00Repositório Institucional da PUC-RIO (Projeto Maxwell) - Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)false |
| dc.title.none.fl_str_mv |
[en] MOORING PATTERN OPTIMIZATION USING GENETIC ALGORITHMS [pt] OTIMIZAÇÃO DA DISPOSIÇÃO DE LINHAS DE ANCORAGEM UTILIZANDO ALGORITMOS GENÉTICOS |
| title |
[en] MOORING PATTERN OPTIMIZATION USING GENETIC ALGORITHMS |
| spellingShingle |
[en] MOORING PATTERN OPTIMIZATION USING GENETIC ALGORITHMS ALONSO JOAQUIN JUVINAO CARBONO [pt] OTIMIZACAO DE ESTRUTURAS [pt] LINHAS DE ANCORAGEM [pt] ALGORITMO GENETICO [en] STRUCTURAL OPTIMIZATION [en] MOORING PATTERN [en] GENETIC ALGORITHM |
| title_short |
[en] MOORING PATTERN OPTIMIZATION USING GENETIC ALGORITHMS |
| title_full |
[en] MOORING PATTERN OPTIMIZATION USING GENETIC ALGORITHMS |
| title_fullStr |
[en] MOORING PATTERN OPTIMIZATION USING GENETIC ALGORITHMS |
| title_full_unstemmed |
[en] MOORING PATTERN OPTIMIZATION USING GENETIC ALGORITHMS |
| title_sort |
[en] MOORING PATTERN OPTIMIZATION USING GENETIC ALGORITHMS |
| author |
ALONSO JOAQUIN JUVINAO CARBONO |
| author_facet |
ALONSO JOAQUIN JUVINAO CARBONO |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
LUIZ FERNANDO CAMPOS RAMOS MARTHA |
| dc.contributor.author.fl_str_mv |
ALONSO JOAQUIN JUVINAO CARBONO |
| dc.subject.por.fl_str_mv |
[pt] OTIMIZACAO DE ESTRUTURAS [pt] LINHAS DE ANCORAGEM [pt] ALGORITMO GENETICO [en] STRUCTURAL OPTIMIZATION [en] MOORING PATTERN [en] GENETIC ALGORITHM |
| topic |
[pt] OTIMIZACAO DE ESTRUTURAS [pt] LINHAS DE ANCORAGEM [pt] ALGORITMO GENETICO [en] STRUCTURAL OPTIMIZATION [en] MOORING PATTERN [en] GENETIC ALGORITHM |
| description |
[pt] Com o crescimento da demanda de óleo, as empresas de petróleo têm sido forçadas a explorar novas reservas em águas cada vez mais profundas. Em função do alto custo das operações de exploração de petróleo, torna-se necessário o desenvolvimento de tecnologias capazes de aumentar a eficiência e reduzir os custos envolvidos. Neste contexto, a utilização de unidades flutuantes torna-se cada vez mais freqüente em águas profundas. O posicionamento das unidades flutuantes durante as operações de exploração de óleo é garantido pelas linhas de ancoragem, que são estruturas flexíveis compostas, geralmente, por trechos de aço, amarras e/ou cabos sintéticos. O presente trabalho apresenta o desenvolvimento de um Algoritmo Genético (AG) para solucionar o problema da disposição das linhas de ancoragem de unidades flutuantes utilizadas nas operações de exploração de petróleo. A distribuição das linhas de ancoragem é um dos fatores que influencia diretamente nos deslocamentos (offsets) sofridos pelas unidades flutuantes quando submetidas às ações ambientais, como ventos, ondas e correntes. Desta forma, o AG busca uma disposição ótima das linhas de ancoragem cujo objetivo final é a minimização dos deslocamentos da unidade flutuante. Os operadores básicos utilizados por este algoritmo são mutação, crossover e seleção. Neste trabalho, foi adotada a técnica steady-state, que só efetua a substituição de um ou dois indivíduos por geração. O cálculo da posição de equilíbrio estático da unidade flutuante é feito aplicando-se a equação da catenária para cada linha de ancoragem com o objetivo de se obterem as forças de restauração na unidade, e empregando-se um processo iterativo para calcular a sua posição final de equilíbrio. |
| publishDate |
2006 |
| dc.date.none.fl_str_mv |
2006-05-03 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8242&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8242&idi=2 http://doi.org/10.17771/PUCRio.acad.8242 |
| url |
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8242&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8242&idi=2 http://doi.org/10.17771/PUCRio.acad.8242 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
MAXWELL |
| publisher.none.fl_str_mv |
MAXWELL |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da PUC-RIO (Projeto Maxwell) instname:Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO) instacron:PUC_RIO |
| instname_str |
Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO) |
| instacron_str |
PUC_RIO |
| institution |
PUC_RIO |
| reponame_str |
Repositório Institucional da PUC-RIO (Projeto Maxwell) |
| collection |
Repositório Institucional da PUC-RIO (Projeto Maxwell) |
| repository.name.fl_str_mv |
Repositório Institucional da PUC-RIO (Projeto Maxwell) - Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO) |
| repository.mail.fl_str_mv |
|
| _version_ |
1856395890870190080 |