[en] INTELLIGENT SYSTEM FOR OPTIMIZATION OF ALTERNATIVES FOR PETROLEUM FIELDS DEVELOPMENT

Detalhes bibliográficos
Ano de defesa: 2005
Autor(a) principal: YVAN JESUS TUPAC VALDIVIA
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=6584&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=6584&idi=2
http://doi.org/10.17771/PUCRio.acad.6584
Resumo: [pt] Este trabalho investiga o problema de otimização de alternativas para o desenvolvimento de campos petrolíferos. Uma alternativa de desenvolvimento refere-se à forma como um campo petrolífero, conhecido e delimitado, é colocado em produção, isto é, diz respeito à determinação do número, localização e agendamento dos poços de produção e injeção. Otimização de alternativas consiste em encontrar as configurações de produção que, a longo prazo, forneçam o maior valor presente líquido (VPL), obtido a partir do custo de investimento inicial, do preço do petróleo, da produção de óleo e gás, dos custos de operação, das alíquotas de impostos e dos royalties pagos durante o tempo de produção. A produção de óleo é obtida usando-se um simulador de reservatório. O simulador recebe a informação da alternativa a ser simulada e retorna a curva de produção de óleo e gás no tempo de produção especificado. Cada execução do simulador pode demorar desde alguns segundos até várias horas, dependendo da complexidade do reservatório modelado. Este trabalho propõe, implementa e avalia um sistema inteligente de otimização que emprega: algoritmos genéticos (AGs) para a busca de uma alternativa de desenvolvimento ótima; uso de ambiente de computação paralela para a simulação de reservatório e cálculo do VPL das alternativas; um módulo de inferência baseado em modelos inteligentes para aproximar a função de produção de óleo; e um módulo de caracterização baseado em mapas de qualidade para obter informações do campo petrolífero a serem aproveitadas durante a otimização. Este trabalho consistiu de 4 etapas: uma revisão da literatura sobre desenvolvimento de campos petrolíferos, simulação de reservatórios e caracterização de campos petrolíferos; um estudo das técnicas de inteligência computacional para otimização e aproximação de funções; desenvolvimento do modelo proposto de otimização de alternativas; e o estudo de casos. O modelo proposto foi avaliado com configurações de reservatório homogêneo e heterogêneo obtendo resultados da otimização, do uso da caracterização, da aproximação pelo módulo de inferência e do uso do ambiente paralelo. Os resultados obtidos mostram que, o modelo proposto, permite alcançar respostas com altos VPL sem utilizar conhecimento prévio, e também a partir de informações extraídas da caracterização ou fornecidas pelo próprio especialista como sementes iniciais na otimização. A principal contribuição deste trabalho é a concepção e implementação de um sistema baseado em técnicas inteligentes para otimizar alternativas de desenvolvimento com uma redução do tempo computacional para um processo iterativo, obtida tanto pelo aproveitamento do poder computacional de um ambiente de computação paralela, como pelo uso de aproximações das curvas de produção. Este sistema inteligente oferece uma ferramenta de suporte à decisão que automatiza a busca de alternativas de desenvolvimento e aproveita informações vindas do conhecimento do engenheiro de reservatório.
id PUC_RIO-1_cb88532605a3c5c1093b0bde2f6b0b4f
oai_identifier_str oai:MAXWELL.puc-rio.br:6584
network_acronym_str PUC_RIO-1
network_name_str Repositório Institucional da PUC-RIO (Projeto Maxwell)
repository_id_str
spelling [en] INTELLIGENT SYSTEM FOR OPTIMIZATION OF ALTERNATIVES FOR PETROLEUM FIELDS DEVELOPMENT [pt] SISTEMA INTELIGENTE DE OTIMIZAÇÃO DE ALTERNATIVAS DE DESENVOLVIMENTO DE CAMPOS PETROLÍFEROS [pt] REDE NEURAL[pt] MODELO NEURO-FUZZY[pt] APROXIMACAO DE FUNCOES[pt] ENGENHARIA DE RESERVATORIOS[pt] ALGORITMO EVOLUCIONARIO[pt] PROCESSAMENTO DISTRIBUIDO [pt] OTIMIZACAO[en] NEURAL NETWORKS[en] NEURO-FUZZY MODEL[en] FUNCTION APPROXIMATION[en] RESERVOIR ENGINEERING[en] EVOLUTIONARY ALGORITHM[en] DISTRIBUTED COMPUTING[en] OPTIMIZATION[pt] Este trabalho investiga o problema de otimização de alternativas para o desenvolvimento de campos petrolíferos. Uma alternativa de desenvolvimento refere-se à forma como um campo petrolífero, conhecido e delimitado, é colocado em produção, isto é, diz respeito à determinação do número, localização e agendamento dos poços de produção e injeção. Otimização de alternativas consiste em encontrar as configurações de produção que, a longo prazo, forneçam o maior valor presente líquido (VPL), obtido a partir do custo de investimento inicial, do preço do petróleo, da produção de óleo e gás, dos custos de operação, das alíquotas de impostos e dos royalties pagos durante o tempo de produção. A produção de óleo é obtida usando-se um simulador de reservatório. O simulador recebe a informação da alternativa a ser simulada e retorna a curva de produção de óleo e gás no tempo de produção especificado. Cada execução do simulador pode demorar desde alguns segundos até várias horas, dependendo da complexidade do reservatório modelado. Este trabalho propõe, implementa e avalia um sistema inteligente de otimização que emprega: algoritmos genéticos (AGs) para a busca de uma alternativa de desenvolvimento ótima; uso de ambiente de computação paralela para a simulação de reservatório e cálculo do VPL das alternativas; um módulo de inferência baseado em modelos inteligentes para aproximar a função de produção de óleo; e um módulo de caracterização baseado em mapas de qualidade para obter informações do campo petrolífero a serem aproveitadas durante a otimização. Este trabalho consistiu de 4 etapas: uma revisão da literatura sobre desenvolvimento de campos petrolíferos, simulação de reservatórios e caracterização de campos petrolíferos; um estudo das técnicas de inteligência computacional para otimização e aproximação de funções; desenvolvimento do modelo proposto de otimização de alternativas; e o estudo de casos. O modelo proposto foi avaliado com configurações de reservatório homogêneo e heterogêneo obtendo resultados da otimização, do uso da caracterização, da aproximação pelo módulo de inferência e do uso do ambiente paralelo. Os resultados obtidos mostram que, o modelo proposto, permite alcançar respostas com altos VPL sem utilizar conhecimento prévio, e também a partir de informações extraídas da caracterização ou fornecidas pelo próprio especialista como sementes iniciais na otimização. A principal contribuição deste trabalho é a concepção e implementação de um sistema baseado em técnicas inteligentes para otimizar alternativas de desenvolvimento com uma redução do tempo computacional para um processo iterativo, obtida tanto pelo aproveitamento do poder computacional de um ambiente de computação paralela, como pelo uso de aproximações das curvas de produção. Este sistema inteligente oferece uma ferramenta de suporte à decisão que automatiza a busca de alternativas de desenvolvimento e aproveita informações vindas do conhecimento do engenheiro de reservatório.[en] This work investigates the problem of optimization of alternatives for petroleum fields` development. A development alternative refers to the way a well-known and delimited petroleum field is placed in production. This process involves the determination of the number, localization and scheduling of producer and injector wells. Thus, the optimization of alternatives consists of finding the production configurations that, in the long term, provide the maximum net present value (NPV); this is obtained from the investment cost, oil price, oil & gas production, operation costs and taxes and royalties paid during the production time. The oil and gas production is obtained from a reservoir simulator. The simulator receives information from the alternative to be simulated, and returns an oil & gas production to specified production time. Each simulation can take from a few seconds to several hours, depending on complexity of the reservoir being modeled. This work proposes, implements and evaluates an intelligent optimization system that comprises: genetic algorithms (GAs) to search an optimal development alternative; using of parallel computing environment to reservoir simulation and NPV computing; an inference module, basis in intelligent models, to approximate the oil production function; and a oilfield characterization module, basis in quality maps, to obtain information about the oilfield to use during optimization process. This work consisted of four stages: a literature review about petroleum field development and reservoir simulation; a study about computational intelligence techniques applied in optimization and functions approximation; the development of alternatives optimization proposal model; and the case studies. The proposal model was evaluated using homogeneous and heterogeneous reservoir configurations, obtaining results of optimization, by using characterization, the inference module and the parallel environment. The obtained results indicate that the proposed model provides alternatives with high NPV without previous knowledge and also from information provided by characterization or information inserted by the expert as initial seeds into optimization. The main contribution of this work is the conception and the implementation of a system basis in intelligent techniques to optimize development alternatives offering a reduction time to an iterative process, obtained from exploit of computational effort of a parallel computing environment or by using of production curves approximations. This intelligent system offers a decision-support tool that allows automating the search process of development alternatives and exploiting information from knowledge of reservoir engineers.MAXWELLMARLEY MARIA BERNARDES REBUZZI VELLASCOMARLEY MARIA BERNARDES REBUZZI VELLASCOMARCO AURELIO CAVALCANTI PACHECOMARCO AURELIO CAVALCANTI PACHECOMARCO AURELIO CAVALCANTI PACHECOYVAN JESUS TUPAC VALDIVIA2005-06-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttps://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=6584&idi=1https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=6584&idi=2http://doi.org/10.17771/PUCRio.acad.6584porreponame:Repositório Institucional da PUC-RIO (Projeto Maxwell)instname:Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)instacron:PUC_RIOinfo:eu-repo/semantics/openAccess2019-06-12T00:00:00Zoai:MAXWELL.puc-rio.br:6584Repositório InstitucionalPRIhttps://www.maxwell.vrac.puc-rio.br/ibict.phpopendoar:5342019-06-12T00:00Repositório Institucional da PUC-RIO (Projeto Maxwell) - Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)false
dc.title.none.fl_str_mv [en] INTELLIGENT SYSTEM FOR OPTIMIZATION OF ALTERNATIVES FOR PETROLEUM FIELDS DEVELOPMENT
[pt] SISTEMA INTELIGENTE DE OTIMIZAÇÃO DE ALTERNATIVAS DE DESENVOLVIMENTO DE CAMPOS PETROLÍFEROS
title [en] INTELLIGENT SYSTEM FOR OPTIMIZATION OF ALTERNATIVES FOR PETROLEUM FIELDS DEVELOPMENT
spellingShingle [en] INTELLIGENT SYSTEM FOR OPTIMIZATION OF ALTERNATIVES FOR PETROLEUM FIELDS DEVELOPMENT
YVAN JESUS TUPAC VALDIVIA
[pt] REDE NEURAL
[pt] MODELO NEURO-FUZZY
[pt] APROXIMACAO DE FUNCOES
[pt] ENGENHARIA DE RESERVATORIOS
[pt] ALGORITMO EVOLUCIONARIO
[pt] PROCESSAMENTO DISTRIBUIDO
[pt] OTIMIZACAO
[en] NEURAL NETWORKS
[en] NEURO-FUZZY MODEL
[en] FUNCTION APPROXIMATION
[en] RESERVOIR ENGINEERING
[en] EVOLUTIONARY ALGORITHM
[en] DISTRIBUTED COMPUTING
[en] OPTIMIZATION
title_short [en] INTELLIGENT SYSTEM FOR OPTIMIZATION OF ALTERNATIVES FOR PETROLEUM FIELDS DEVELOPMENT
title_full [en] INTELLIGENT SYSTEM FOR OPTIMIZATION OF ALTERNATIVES FOR PETROLEUM FIELDS DEVELOPMENT
title_fullStr [en] INTELLIGENT SYSTEM FOR OPTIMIZATION OF ALTERNATIVES FOR PETROLEUM FIELDS DEVELOPMENT
title_full_unstemmed [en] INTELLIGENT SYSTEM FOR OPTIMIZATION OF ALTERNATIVES FOR PETROLEUM FIELDS DEVELOPMENT
title_sort [en] INTELLIGENT SYSTEM FOR OPTIMIZATION OF ALTERNATIVES FOR PETROLEUM FIELDS DEVELOPMENT
author YVAN JESUS TUPAC VALDIVIA
author_facet YVAN JESUS TUPAC VALDIVIA
author_role author
dc.contributor.none.fl_str_mv MARLEY MARIA BERNARDES REBUZZI VELLASCO
MARLEY MARIA BERNARDES REBUZZI VELLASCO
MARCO AURELIO CAVALCANTI PACHECO
MARCO AURELIO CAVALCANTI PACHECO
MARCO AURELIO CAVALCANTI PACHECO
dc.contributor.author.fl_str_mv YVAN JESUS TUPAC VALDIVIA
dc.subject.por.fl_str_mv [pt] REDE NEURAL
[pt] MODELO NEURO-FUZZY
[pt] APROXIMACAO DE FUNCOES
[pt] ENGENHARIA DE RESERVATORIOS
[pt] ALGORITMO EVOLUCIONARIO
[pt] PROCESSAMENTO DISTRIBUIDO
[pt] OTIMIZACAO
[en] NEURAL NETWORKS
[en] NEURO-FUZZY MODEL
[en] FUNCTION APPROXIMATION
[en] RESERVOIR ENGINEERING
[en] EVOLUTIONARY ALGORITHM
[en] DISTRIBUTED COMPUTING
[en] OPTIMIZATION
topic [pt] REDE NEURAL
[pt] MODELO NEURO-FUZZY
[pt] APROXIMACAO DE FUNCOES
[pt] ENGENHARIA DE RESERVATORIOS
[pt] ALGORITMO EVOLUCIONARIO
[pt] PROCESSAMENTO DISTRIBUIDO
[pt] OTIMIZACAO
[en] NEURAL NETWORKS
[en] NEURO-FUZZY MODEL
[en] FUNCTION APPROXIMATION
[en] RESERVOIR ENGINEERING
[en] EVOLUTIONARY ALGORITHM
[en] DISTRIBUTED COMPUTING
[en] OPTIMIZATION
description [pt] Este trabalho investiga o problema de otimização de alternativas para o desenvolvimento de campos petrolíferos. Uma alternativa de desenvolvimento refere-se à forma como um campo petrolífero, conhecido e delimitado, é colocado em produção, isto é, diz respeito à determinação do número, localização e agendamento dos poços de produção e injeção. Otimização de alternativas consiste em encontrar as configurações de produção que, a longo prazo, forneçam o maior valor presente líquido (VPL), obtido a partir do custo de investimento inicial, do preço do petróleo, da produção de óleo e gás, dos custos de operação, das alíquotas de impostos e dos royalties pagos durante o tempo de produção. A produção de óleo é obtida usando-se um simulador de reservatório. O simulador recebe a informação da alternativa a ser simulada e retorna a curva de produção de óleo e gás no tempo de produção especificado. Cada execução do simulador pode demorar desde alguns segundos até várias horas, dependendo da complexidade do reservatório modelado. Este trabalho propõe, implementa e avalia um sistema inteligente de otimização que emprega: algoritmos genéticos (AGs) para a busca de uma alternativa de desenvolvimento ótima; uso de ambiente de computação paralela para a simulação de reservatório e cálculo do VPL das alternativas; um módulo de inferência baseado em modelos inteligentes para aproximar a função de produção de óleo; e um módulo de caracterização baseado em mapas de qualidade para obter informações do campo petrolífero a serem aproveitadas durante a otimização. Este trabalho consistiu de 4 etapas: uma revisão da literatura sobre desenvolvimento de campos petrolíferos, simulação de reservatórios e caracterização de campos petrolíferos; um estudo das técnicas de inteligência computacional para otimização e aproximação de funções; desenvolvimento do modelo proposto de otimização de alternativas; e o estudo de casos. O modelo proposto foi avaliado com configurações de reservatório homogêneo e heterogêneo obtendo resultados da otimização, do uso da caracterização, da aproximação pelo módulo de inferência e do uso do ambiente paralelo. Os resultados obtidos mostram que, o modelo proposto, permite alcançar respostas com altos VPL sem utilizar conhecimento prévio, e também a partir de informações extraídas da caracterização ou fornecidas pelo próprio especialista como sementes iniciais na otimização. A principal contribuição deste trabalho é a concepção e implementação de um sistema baseado em técnicas inteligentes para otimizar alternativas de desenvolvimento com uma redução do tempo computacional para um processo iterativo, obtida tanto pelo aproveitamento do poder computacional de um ambiente de computação paralela, como pelo uso de aproximações das curvas de produção. Este sistema inteligente oferece uma ferramenta de suporte à decisão que automatiza a busca de alternativas de desenvolvimento e aproveita informações vindas do conhecimento do engenheiro de reservatório.
publishDate 2005
dc.date.none.fl_str_mv 2005-06-15
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=6584&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=6584&idi=2
http://doi.org/10.17771/PUCRio.acad.6584
url https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=6584&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=6584&idi=2
http://doi.org/10.17771/PUCRio.acad.6584
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv MAXWELL
publisher.none.fl_str_mv MAXWELL
dc.source.none.fl_str_mv reponame:Repositório Institucional da PUC-RIO (Projeto Maxwell)
instname:Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
instacron:PUC_RIO
instname_str Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
instacron_str PUC_RIO
institution PUC_RIO
reponame_str Repositório Institucional da PUC-RIO (Projeto Maxwell)
collection Repositório Institucional da PUC-RIO (Projeto Maxwell)
repository.name.fl_str_mv Repositório Institucional da PUC-RIO (Projeto Maxwell) - Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
repository.mail.fl_str_mv
_version_ 1856395886638137344