Semi-supervised learning methods for unsupervised domain adaptation in medical imaging segmentation

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Ballester, Pedro Lemos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Pontifícia Universidade Católica do Rio Grande do Sul
Escola Politécnica
Brasil
PUCRS
Programa de Pós-Graduação em Ciência da Computação
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://tede2.pucrs.br/tede2/handle/tede/8843
Resumo: Machine learning applications make several assumptions regarding the scenario where they are employed. One common assumption is that data distribution in the test environment follows the same distribution of the training set. This assumption is systematically broken in most real-world scenarios; the difference between these distributions is commonly known as domain shift. Unsupervised domain adaptation aims at suppressing this problem by leveraging knowledge with unlabeled data from the test environment. One of the most sensitive fields for domain shift is medical imaging. Due to the heterogeneity in data distributions from scanners, models tend to vary in predictive performance when dealing with images from scanners with no examples in the training set. We propose two contributions in this work. First, we introduce the use of self-ensembling domain adaptation in the field of medical imaging segmentation in a spinal cord grey matter segmentation task. Next, based on the success of self-ensembling, we adapt two other recent work from the semi-supervised learning literature to the same task, namely, unsupervised data augmentation and MixMatch. We conduct ablation studies and other experiments in order to understand the behavior of each method and compare their best results. The results show improvements over training models in a supervised learning fashion and demonstrate that recent semi-supervised learning methods are promising for domain adaptation in medical imaging segmentation.
id P_RS_1c200a7145de140bca7dc8f9404a0bd0
oai_identifier_str oai:tede2.pucrs.br:tede/8843
network_acronym_str P_RS
network_name_str Biblioteca Digital de Teses e Dissertações da PUC_RS
repository_id_str
spelling Semi-supervised learning methods for unsupervised domain adaptation in medical imaging segmentationAprendizado ProfundoAdaptação de DomínioAprendizado Semi-SupervisionadoSelf-EnsemblingDeep LearningDomain AdaptationSemi-Supervised LearningCIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAOMachine learning applications make several assumptions regarding the scenario where they are employed. One common assumption is that data distribution in the test environment follows the same distribution of the training set. This assumption is systematically broken in most real-world scenarios; the difference between these distributions is commonly known as domain shift. Unsupervised domain adaptation aims at suppressing this problem by leveraging knowledge with unlabeled data from the test environment. One of the most sensitive fields for domain shift is medical imaging. Due to the heterogeneity in data distributions from scanners, models tend to vary in predictive performance when dealing with images from scanners with no examples in the training set. We propose two contributions in this work. First, we introduce the use of self-ensembling domain adaptation in the field of medical imaging segmentation in a spinal cord grey matter segmentation task. Next, based on the success of self-ensembling, we adapt two other recent work from the semi-supervised learning literature to the same task, namely, unsupervised data augmentation and MixMatch. We conduct ablation studies and other experiments in order to understand the behavior of each method and compare their best results. The results show improvements over training models in a supervised learning fashion and demonstrate that recent semi-supervised learning methods are promising for domain adaptation in medical imaging segmentation.Aplicações com aprendizado de máquina possuem diversas suposições sobre o cenário em que são colocadas. Uma suposição comum é a de que o ambiente de teste segue a mesma distribuição dos dados de treino. Essa suposição é sistematicamente quebrada em cénarios do mundo real; a diferença entre essas distribuições é conhecida como domain shift. Adaptação de domínio não-supervisionada visa mitigar esse problema impulsionando o conhecimento dos modelos com dados do ambiente de teste. Uma das áreas mais sensíveis a domain shift é a de imagens médicas. Devido a heterogeneidade das distribuições de dados das máquinas de aquisição de imagens, os modelos tendem a variar sua performance preditiva quando lidam com imagens vindas de máquinas sem nenhum exemplo no conjunto de treino. Este trabalho propõe duas contribuições. Primeiramente, o uso de self ensembling em adaptação de domínio para segmentação de imagens médicas para segmentação de substância cinzenta na medula espinhal é introduzido. Em seguida, baseado no sucesso do self-ensembling, outros trabalhos recentes da literatura de aprendizado semi-supervisionado são adaptados para o contexto apresentado, nominalmente, unsupervised data augmentation e MixMatch. Foram conduzidos estudos de ablação e experimentos para compreensão do comportamento dos métodos e comparação dos seus melhores resultados. Os resultados indicam uma melhoria em relação a treinamento puramente supervisionado, além de demonstrar que os métodos recentes de aprendizado semi-supervisionado são promissores para o campo de adaptação de domínio em segmentação de imagens médicas.Pontifícia Universidade Católica do Rio Grande do SulEscola PolitécnicaBrasilPUCRSPrograma de Pós-Graduação em Ciência da ComputaçãoBarros, Rodrigo Coelhohttp://lattes.cnpq.br/8172124241767828Ballester, Pedro Lemos2019-08-20T13:29:43Z2019-08-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://tede2.pucrs.br/tede2/handle/tede/8843enginfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da PUC_RSinstname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)instacron:PUC_RS2019-09-11T11:02:15Zoai:tede2.pucrs.br:tede/8843Biblioteca Digital de Teses e Dissertaçõeshttp://tede2.pucrs.br/tede2/PRIhttps://tede2.pucrs.br/oai/requestbiblioteca.central@pucrs.br||opendoar:2019-09-11T11:02:15Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)false
dc.title.none.fl_str_mv Semi-supervised learning methods for unsupervised domain adaptation in medical imaging segmentation
title Semi-supervised learning methods for unsupervised domain adaptation in medical imaging segmentation
spellingShingle Semi-supervised learning methods for unsupervised domain adaptation in medical imaging segmentation
Ballester, Pedro Lemos
Aprendizado Profundo
Adaptação de Domínio
Aprendizado Semi-Supervisionado
Self-Ensembling
Deep Learning
Domain Adaptation
Semi-Supervised Learning
CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO
title_short Semi-supervised learning methods for unsupervised domain adaptation in medical imaging segmentation
title_full Semi-supervised learning methods for unsupervised domain adaptation in medical imaging segmentation
title_fullStr Semi-supervised learning methods for unsupervised domain adaptation in medical imaging segmentation
title_full_unstemmed Semi-supervised learning methods for unsupervised domain adaptation in medical imaging segmentation
title_sort Semi-supervised learning methods for unsupervised domain adaptation in medical imaging segmentation
author Ballester, Pedro Lemos
author_facet Ballester, Pedro Lemos
author_role author
dc.contributor.none.fl_str_mv Barros, Rodrigo Coelho
http://lattes.cnpq.br/8172124241767828
dc.contributor.author.fl_str_mv Ballester, Pedro Lemos
dc.subject.por.fl_str_mv Aprendizado Profundo
Adaptação de Domínio
Aprendizado Semi-Supervisionado
Self-Ensembling
Deep Learning
Domain Adaptation
Semi-Supervised Learning
CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO
topic Aprendizado Profundo
Adaptação de Domínio
Aprendizado Semi-Supervisionado
Self-Ensembling
Deep Learning
Domain Adaptation
Semi-Supervised Learning
CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO
description Machine learning applications make several assumptions regarding the scenario where they are employed. One common assumption is that data distribution in the test environment follows the same distribution of the training set. This assumption is systematically broken in most real-world scenarios; the difference between these distributions is commonly known as domain shift. Unsupervised domain adaptation aims at suppressing this problem by leveraging knowledge with unlabeled data from the test environment. One of the most sensitive fields for domain shift is medical imaging. Due to the heterogeneity in data distributions from scanners, models tend to vary in predictive performance when dealing with images from scanners with no examples in the training set. We propose two contributions in this work. First, we introduce the use of self-ensembling domain adaptation in the field of medical imaging segmentation in a spinal cord grey matter segmentation task. Next, based on the success of self-ensembling, we adapt two other recent work from the semi-supervised learning literature to the same task, namely, unsupervised data augmentation and MixMatch. We conduct ablation studies and other experiments in order to understand the behavior of each method and compare their best results. The results show improvements over training models in a supervised learning fashion and demonstrate that recent semi-supervised learning methods are promising for domain adaptation in medical imaging segmentation.
publishDate 2019
dc.date.none.fl_str_mv 2019-08-20T13:29:43Z
2019-08-02
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://tede2.pucrs.br/tede2/handle/tede/8843
url http://tede2.pucrs.br/tede2/handle/tede/8843
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pontifícia Universidade Católica do Rio Grande do Sul
Escola Politécnica
Brasil
PUCRS
Programa de Pós-Graduação em Ciência da Computação
publisher.none.fl_str_mv Pontifícia Universidade Católica do Rio Grande do Sul
Escola Politécnica
Brasil
PUCRS
Programa de Pós-Graduação em Ciência da Computação
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da PUC_RS
instname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
instacron:PUC_RS
instname_str Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
instacron_str PUC_RS
institution PUC_RS
reponame_str Biblioteca Digital de Teses e Dissertações da PUC_RS
collection Biblioteca Digital de Teses e Dissertações da PUC_RS
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
repository.mail.fl_str_mv biblioteca.central@pucrs.br||
_version_ 1850041296130932736