Pathology localization on chest radiographs with limited supervision via semi-supervised multiple instance learning
| Ano de defesa: | 2021 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Pontifícia Universidade Católica do Rio Grande do Sul
Escola Politécnica Brasil PUCRS Programa de Pós-Graduação em Ciência da Computação |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://tede2.pucrs.br/tede2/handle/tede/9790 |
Resumo: | Radiographs are the primary examination for diagnosing chest conditions, and yet they are frequently misread/misdiagnosed due to human-observer confusion. In clinical practice, there is an increase of deep learning approaches to support radiologists on the decision-making process to improve diagnostic accuracy. To properly support radiologists, it is insufficient for the system to simply output a diagnosis label. Ideally, the model should provide more information to support the classification result, such as the spatial localization of the finding. To properly train deep learning models, we usually need lots of annotated data. There is a vast amount of publicly-available chest radiographs labeled according to their radiological findings (labels for classification), but very few contain a location annotation. Our goal is to extend the use of unlabeled data to improve pathology localization in chest radiographs in a scenario with limited labeled data. We identify state-of-the-art semi-supervised methods and evaluated their performance on a classification scenario. Next, we extend the best method, Mean Teacher, to perform localization within a multiple instance learning framework, introducing our method C-MIL. Multiple instance learning is a paradigm with two types of labels: a general label that is known, and a more specific and unknown label but related to the one known, in our case, pathology presence and its localization. Our results show improvements of applying consistency regularization over a multiple instance localization framework and demonstrate that semi-supervised learning methods are promising to advance the state-of-the-art performance of pathology localization methods. |
| id |
P_RS_46d04f2c5711da7ac2aed4beb2cd538e |
|---|---|
| oai_identifier_str |
oai:tede2.pucrs.br:tede/9790 |
| network_acronym_str |
P_RS |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da PUC_RS |
| repository_id_str |
|
| spelling |
Pathology localization on chest radiographs with limited supervision via semi-supervised multiple instance learningLocalização de patologias em radiografias de tórax com supervisão limitada via aprendizado de múltiplas instâncias semi-supervisionadoDeep LearningMedical ImagingSemi-Supervised LearningMultiple Instance LearningAprendizado ProfundoImagens MédicasAprendizado Semi-SupervisionadoAprendizado de Múltiplas InstânciasCIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAORadiographs are the primary examination for diagnosing chest conditions, and yet they are frequently misread/misdiagnosed due to human-observer confusion. In clinical practice, there is an increase of deep learning approaches to support radiologists on the decision-making process to improve diagnostic accuracy. To properly support radiologists, it is insufficient for the system to simply output a diagnosis label. Ideally, the model should provide more information to support the classification result, such as the spatial localization of the finding. To properly train deep learning models, we usually need lots of annotated data. There is a vast amount of publicly-available chest radiographs labeled according to their radiological findings (labels for classification), but very few contain a location annotation. Our goal is to extend the use of unlabeled data to improve pathology localization in chest radiographs in a scenario with limited labeled data. We identify state-of-the-art semi-supervised methods and evaluated their performance on a classification scenario. Next, we extend the best method, Mean Teacher, to perform localization within a multiple instance learning framework, introducing our method C-MIL. Multiple instance learning is a paradigm with two types of labels: a general label that is known, and a more specific and unknown label but related to the one known, in our case, pathology presence and its localization. Our results show improvements of applying consistency regularization over a multiple instance localization framework and demonstrate that semi-supervised learning methods are promising to advance the state-of-the-art performance of pathology localization methods.Radiografias são exames primários para a avaliação das condições do tórax. Na prática clínica, vem se popularizando a utilização de abordagens de aprendizado profundo para apoiar radiologistas no processo de tomada de decisão visando aumentar a acurácia diagnóstica. Para dar suporte adequado aos radiologistas, é insuficiente um modelo que simplesmente infere um rótulo diagnóstico. Idealmente, o modelo deve fornecer mais informações para apoiar o resultado da classificação, como a localização espacial do achado radiológico. Para treinar adequadamente modelos de aprendizado profundo, geralmente é necessário utilizar muitos dados anotados. Há uma grande quantidade de imagens de radiografias de tórax disponíveis publicamente, anotadas de acordo com a presença de achados radiológicos, mas poucas contêm uma anotação com a localização desses achados. O objetivo deste trabalho é utilizar a quantia limitada de dados anotados e a vasta quantia de dados não anotados para melhorar o desempenho de métodos de localização automática de patologias em radiografias de tórax. Identificamos o estado-da-arte de métodos semi-supervisionados e avaliamos seu desempenho em um cenário de classificação. Em seguida, estendemos o melhor método, Mean Teacher, para realizar a tarefa de localização em um framework de aprendizado de múltiplas instâncias, introduzindo nosso método C-MIL. Nesse paradigma, existem dois tipos de rótulos: um rótulo geral que é conhecido, e um rótulo mais específico e desconhecido mas que é relacionado ao conhecido, no caso, a presença de patologia e sua localização. Os resultados mostram melhorias na aplicação de regularização de consistência em um cenário de localização por meio de aprendizado de múltiplas instâncias e demonstram que os métodos de aprendizado semi-supervisionado são promissores para o avanço do desempenho de métodos de localização automática de patologias em imagens médicas.Pontifícia Universidade Católica do Rio Grande do SulEscola PolitécnicaBrasilPUCRSPrograma de Pós-Graduação em Ciência da ComputaçãoBarros, Rodrigo Coelhohttp://lattes.cnpq.br/8172124241767828Pooch, Eduardo Henrique Pais2021-07-20T19:18:32Z2021-03-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://tede2.pucrs.br/tede2/handle/tede/9790enginfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da PUC_RSinstname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)instacron:PUC_RS2021-07-20T23:00:11Zoai:tede2.pucrs.br:tede/9790Biblioteca Digital de Teses e Dissertaçõeshttp://tede2.pucrs.br/tede2/PRIhttps://tede2.pucrs.br/oai/requestbiblioteca.central@pucrs.br||opendoar:2021-07-20T23:00:11Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)false |
| dc.title.none.fl_str_mv |
Pathology localization on chest radiographs with limited supervision via semi-supervised multiple instance learning Localização de patologias em radiografias de tórax com supervisão limitada via aprendizado de múltiplas instâncias semi-supervisionado |
| title |
Pathology localization on chest radiographs with limited supervision via semi-supervised multiple instance learning |
| spellingShingle |
Pathology localization on chest radiographs with limited supervision via semi-supervised multiple instance learning Pooch, Eduardo Henrique Pais Deep Learning Medical Imaging Semi-Supervised Learning Multiple Instance Learning Aprendizado Profundo Imagens Médicas Aprendizado Semi-Supervisionado Aprendizado de Múltiplas Instâncias CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO |
| title_short |
Pathology localization on chest radiographs with limited supervision via semi-supervised multiple instance learning |
| title_full |
Pathology localization on chest radiographs with limited supervision via semi-supervised multiple instance learning |
| title_fullStr |
Pathology localization on chest radiographs with limited supervision via semi-supervised multiple instance learning |
| title_full_unstemmed |
Pathology localization on chest radiographs with limited supervision via semi-supervised multiple instance learning |
| title_sort |
Pathology localization on chest radiographs with limited supervision via semi-supervised multiple instance learning |
| author |
Pooch, Eduardo Henrique Pais |
| author_facet |
Pooch, Eduardo Henrique Pais |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Barros, Rodrigo Coelho http://lattes.cnpq.br/8172124241767828 |
| dc.contributor.author.fl_str_mv |
Pooch, Eduardo Henrique Pais |
| dc.subject.por.fl_str_mv |
Deep Learning Medical Imaging Semi-Supervised Learning Multiple Instance Learning Aprendizado Profundo Imagens Médicas Aprendizado Semi-Supervisionado Aprendizado de Múltiplas Instâncias CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO |
| topic |
Deep Learning Medical Imaging Semi-Supervised Learning Multiple Instance Learning Aprendizado Profundo Imagens Médicas Aprendizado Semi-Supervisionado Aprendizado de Múltiplas Instâncias CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO |
| description |
Radiographs are the primary examination for diagnosing chest conditions, and yet they are frequently misread/misdiagnosed due to human-observer confusion. In clinical practice, there is an increase of deep learning approaches to support radiologists on the decision-making process to improve diagnostic accuracy. To properly support radiologists, it is insufficient for the system to simply output a diagnosis label. Ideally, the model should provide more information to support the classification result, such as the spatial localization of the finding. To properly train deep learning models, we usually need lots of annotated data. There is a vast amount of publicly-available chest radiographs labeled according to their radiological findings (labels for classification), but very few contain a location annotation. Our goal is to extend the use of unlabeled data to improve pathology localization in chest radiographs in a scenario with limited labeled data. We identify state-of-the-art semi-supervised methods and evaluated their performance on a classification scenario. Next, we extend the best method, Mean Teacher, to perform localization within a multiple instance learning framework, introducing our method C-MIL. Multiple instance learning is a paradigm with two types of labels: a general label that is known, and a more specific and unknown label but related to the one known, in our case, pathology presence and its localization. Our results show improvements of applying consistency regularization over a multiple instance localization framework and demonstrate that semi-supervised learning methods are promising to advance the state-of-the-art performance of pathology localization methods. |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-07-20T19:18:32Z 2021-03-25 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://tede2.pucrs.br/tede2/handle/tede/9790 |
| url |
http://tede2.pucrs.br/tede2/handle/tede/9790 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Pontifícia Universidade Católica do Rio Grande do Sul Escola Politécnica Brasil PUCRS Programa de Pós-Graduação em Ciência da Computação |
| publisher.none.fl_str_mv |
Pontifícia Universidade Católica do Rio Grande do Sul Escola Politécnica Brasil PUCRS Programa de Pós-Graduação em Ciência da Computação |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da PUC_RS instname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) instacron:PUC_RS |
| instname_str |
Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) |
| instacron_str |
PUC_RS |
| institution |
PUC_RS |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da PUC_RS |
| collection |
Biblioteca Digital de Teses e Dissertações da PUC_RS |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) |
| repository.mail.fl_str_mv |
biblioteca.central@pucrs.br|| |
| _version_ |
1850041304441946112 |