Métodos de clusterização para apoio à classificação estética de documentos
| Ano de defesa: | 2008 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Pontifícia Universidade Católica do Rio Grande do Sul
Faculdade de Informáca BR PUCRS Programa de Pós-Graduação em Ciência da Computação |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://tede2.pucrs.br/tede2/handle/tede/5028 |
Resumo: | Neste trabalho serão abordados estudos referentes à classificação de grande quantidade de documentos de conteúdo variável. Em tal processo quando um grande número de documentos é gerado, existe a necessidade de um usuário verificá-los um a um com a intenção de separá-los em bons (com pouco ou nenhum problema estrutural) ou ruins (que possuem problemas estruturais), processo este considerado lento e oneroso. Considerando este problema, neste trabalho foi desenvolvida uma ferramenta de classificação estética de documentos que visa reduzir esta intervenção humana. A ferramenta desenvolvida é baseada em métricas que avaliam o quanto um documento automaticamente gerado difere de seu template, criando para cada um destes documentos uma assinatura baseada nas técnicas de fingerprint, objetivando primeiramente distingui-los entre si para então utilizar técnicas de clusterização criando grupos de documentos com características semelhantes. O algoritmo K-Medóides é usado para fazer tal agrupamento, tal algoritmo funciona criando grupos de objetos considerando um destes como base para a criação de cada cluster. A idéia deste trabalho é reduzir a intervenção humana fazendo com que um usuário classifique em bom ou ruim apenas determinados documentos de cada grupo formado pelo algoritmo de clusterização. São também apresentados resultados de quatro experimentos realizados com esta ferramenta avaliando as contribuições para diminuir a intervenção humana no processo de classificação de documentos. |
| id |
P_RS_3fb6f6c620adf8b9ef1efddf727846d7 |
|---|---|
| oai_identifier_str |
oai:tede2.pucrs.br:tede/5028 |
| network_acronym_str |
P_RS |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da PUC_RS |
| repository_id_str |
|
| spelling |
Métodos de clusterização para apoio à classificação estética de documentosINFORMÁTICAALGORITMOSAGRUPAMENTO DE INFORMAÇÕES (INFORMÁTICA)DOCUMENTAÇÃOCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAONeste trabalho serão abordados estudos referentes à classificação de grande quantidade de documentos de conteúdo variável. Em tal processo quando um grande número de documentos é gerado, existe a necessidade de um usuário verificá-los um a um com a intenção de separá-los em bons (com pouco ou nenhum problema estrutural) ou ruins (que possuem problemas estruturais), processo este considerado lento e oneroso. Considerando este problema, neste trabalho foi desenvolvida uma ferramenta de classificação estética de documentos que visa reduzir esta intervenção humana. A ferramenta desenvolvida é baseada em métricas que avaliam o quanto um documento automaticamente gerado difere de seu template, criando para cada um destes documentos uma assinatura baseada nas técnicas de fingerprint, objetivando primeiramente distingui-los entre si para então utilizar técnicas de clusterização criando grupos de documentos com características semelhantes. O algoritmo K-Medóides é usado para fazer tal agrupamento, tal algoritmo funciona criando grupos de objetos considerando um destes como base para a criação de cada cluster. A idéia deste trabalho é reduzir a intervenção humana fazendo com que um usuário classifique em bom ou ruim apenas determinados documentos de cada grupo formado pelo algoritmo de clusterização. São também apresentados resultados de quatro experimentos realizados com esta ferramenta avaliando as contribuições para diminuir a intervenção humana no processo de classificação de documentos.Pontifícia Universidade Católica do Rio Grande do SulFaculdade de InformácaBRPUCRSPrograma de Pós-Graduação em Ciência da ComputaçãoOliveira, João Batista Souza dehttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4782562A4Primo, Tiago Thompsen2015-04-14T14:49:01Z2008-10-212008-03-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfPRIMO, Tiago Thompsen. Métodos de clusterização para apoio à classificação estética de documentos. 2008. 117 f. Dissertação (Mestrado em Ciência da Computação) - Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, 2008.http://tede2.pucrs.br/tede2/handle/tede/5028porinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da PUC_RSinstname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)instacron:PUC_RS2015-04-17T14:57:30Zoai:tede2.pucrs.br:tede/5028Biblioteca Digital de Teses e Dissertaçõeshttp://tede2.pucrs.br/tede2/PRIhttps://tede2.pucrs.br/oai/requestbiblioteca.central@pucrs.br||opendoar:2015-04-17T14:57:30Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)false |
| dc.title.none.fl_str_mv |
Métodos de clusterização para apoio à classificação estética de documentos |
| title |
Métodos de clusterização para apoio à classificação estética de documentos |
| spellingShingle |
Métodos de clusterização para apoio à classificação estética de documentos Primo, Tiago Thompsen INFORMÁTICA ALGORITMOS AGRUPAMENTO DE INFORMAÇÕES (INFORMÁTICA) DOCUMENTAÇÃO CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| title_short |
Métodos de clusterização para apoio à classificação estética de documentos |
| title_full |
Métodos de clusterização para apoio à classificação estética de documentos |
| title_fullStr |
Métodos de clusterização para apoio à classificação estética de documentos |
| title_full_unstemmed |
Métodos de clusterização para apoio à classificação estética de documentos |
| title_sort |
Métodos de clusterização para apoio à classificação estética de documentos |
| author |
Primo, Tiago Thompsen |
| author_facet |
Primo, Tiago Thompsen |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Oliveira, João Batista Souza de http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4782562A4 |
| dc.contributor.author.fl_str_mv |
Primo, Tiago Thompsen |
| dc.subject.por.fl_str_mv |
INFORMÁTICA ALGORITMOS AGRUPAMENTO DE INFORMAÇÕES (INFORMÁTICA) DOCUMENTAÇÃO CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| topic |
INFORMÁTICA ALGORITMOS AGRUPAMENTO DE INFORMAÇÕES (INFORMÁTICA) DOCUMENTAÇÃO CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| description |
Neste trabalho serão abordados estudos referentes à classificação de grande quantidade de documentos de conteúdo variável. Em tal processo quando um grande número de documentos é gerado, existe a necessidade de um usuário verificá-los um a um com a intenção de separá-los em bons (com pouco ou nenhum problema estrutural) ou ruins (que possuem problemas estruturais), processo este considerado lento e oneroso. Considerando este problema, neste trabalho foi desenvolvida uma ferramenta de classificação estética de documentos que visa reduzir esta intervenção humana. A ferramenta desenvolvida é baseada em métricas que avaliam o quanto um documento automaticamente gerado difere de seu template, criando para cada um destes documentos uma assinatura baseada nas técnicas de fingerprint, objetivando primeiramente distingui-los entre si para então utilizar técnicas de clusterização criando grupos de documentos com características semelhantes. O algoritmo K-Medóides é usado para fazer tal agrupamento, tal algoritmo funciona criando grupos de objetos considerando um destes como base para a criação de cada cluster. A idéia deste trabalho é reduzir a intervenção humana fazendo com que um usuário classifique em bom ou ruim apenas determinados documentos de cada grupo formado pelo algoritmo de clusterização. São também apresentados resultados de quatro experimentos realizados com esta ferramenta avaliando as contribuições para diminuir a intervenção humana no processo de classificação de documentos. |
| publishDate |
2008 |
| dc.date.none.fl_str_mv |
2008-10-21 2008-03-24 2015-04-14T14:49:01Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
PRIMO, Tiago Thompsen. Métodos de clusterização para apoio à classificação estética de documentos. 2008. 117 f. Dissertação (Mestrado em Ciência da Computação) - Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, 2008. http://tede2.pucrs.br/tede2/handle/tede/5028 |
| identifier_str_mv |
PRIMO, Tiago Thompsen. Métodos de clusterização para apoio à classificação estética de documentos. 2008. 117 f. Dissertação (Mestrado em Ciência da Computação) - Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, 2008. |
| url |
http://tede2.pucrs.br/tede2/handle/tede/5028 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Pontifícia Universidade Católica do Rio Grande do Sul Faculdade de Informáca BR PUCRS Programa de Pós-Graduação em Ciência da Computação |
| publisher.none.fl_str_mv |
Pontifícia Universidade Católica do Rio Grande do Sul Faculdade de Informáca BR PUCRS Programa de Pós-Graduação em Ciência da Computação |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da PUC_RS instname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) instacron:PUC_RS |
| instname_str |
Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) |
| instacron_str |
PUC_RS |
| institution |
PUC_RS |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da PUC_RS |
| collection |
Biblioteca Digital de Teses e Dissertações da PUC_RS |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) |
| repository.mail.fl_str_mv |
biblioteca.central@pucrs.br|| |
| _version_ |
1850041265797726208 |