Analisando a viabilidade de deep learning para reconhecimento de ações em datasets pequenos
| Ano de defesa: | 2018 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Pontifícia Universidade Católica do Rio Grande do Sul
Escola Politécnica Brasil PUCRS Programa de Pós-Graduação em Ciência da Computação |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://tede2.pucrs.br/tede2/handle/tede/8036 |
Resumo: | Reconhecimento de ação é a tarefa de visão computacional que identifica qual ação esta ocorrendo em dada sequência de frames. Abordagens tradicionais dependem de características extraídas dessas imagens e algoritmos específicos de domínio, muitas vezes resultando em uma precisão limitada. Os avanços substanciais na aprendizagem profunda e a disponibilidade de conjuntos de dados maiores permitiram que técnicas produzam um desempenho sem conhecimento específico do domínio para reconhecer as ações que estão sendo realizadas, tendo como base apenas sequências de vídeo. No entanto, os algoritmos de aprendizagem profunda geralmente requerem conjuntos de dados rotulados muito grandes para o treinamento. Devido à sua maior capacidade, tais algoritmos geralmente sofrem com overfitting em conjunto de dados pequenos, proporcionando assim um menor poder de generalização. Este trabalho tem como objetivo explorar a aprendizagem profunda no contexto de conjuntos de dados pequenos para reconhecimento de ações. Nosso objetivo é alcançar resultados, mesmo nos casos em que os dados rotulados não sejam abundantes. Para isso, investigamos diferentes arquiteturas profundas, diferentes métodos de processamento, e diferentes métodos de fusão, fornecendo diretrizes e boas práticas para o aprendizado profundo em conjuntos de dados de tamanho pequeno. |
| id |
P_RS_406bbcccdf259edc9ab08d70bf4e2ede |
|---|---|
| oai_identifier_str |
oai:tede2.pucrs.br:tede/8036 |
| network_acronym_str |
P_RS |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da PUC_RS |
| repository_id_str |
|
| spelling |
Analisando a viabilidade de deep learning para reconhecimento de ações em datasets pequenosAprendizado de MáquinaRedes NeuraisRedes Neurais ConvolucionaisReconhecimento de AçõesMachine LearningNeural NetworksConvolutional Neural NetworksAction RecognitionCIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAOReconhecimento de ação é a tarefa de visão computacional que identifica qual ação esta ocorrendo em dada sequência de frames. Abordagens tradicionais dependem de características extraídas dessas imagens e algoritmos específicos de domínio, muitas vezes resultando em uma precisão limitada. Os avanços substanciais na aprendizagem profunda e a disponibilidade de conjuntos de dados maiores permitiram que técnicas produzam um desempenho sem conhecimento específico do domínio para reconhecer as ações que estão sendo realizadas, tendo como base apenas sequências de vídeo. No entanto, os algoritmos de aprendizagem profunda geralmente requerem conjuntos de dados rotulados muito grandes para o treinamento. Devido à sua maior capacidade, tais algoritmos geralmente sofrem com overfitting em conjunto de dados pequenos, proporcionando assim um menor poder de generalização. Este trabalho tem como objetivo explorar a aprendizagem profunda no contexto de conjuntos de dados pequenos para reconhecimento de ações. Nosso objetivo é alcançar resultados, mesmo nos casos em que os dados rotulados não sejam abundantes. Para isso, investigamos diferentes arquiteturas profundas, diferentes métodos de processamento, e diferentes métodos de fusão, fornecendo diretrizes e boas práticas para o aprendizado profundo em conjuntos de dados de tamanho pequeno.Action recognition is the computer vision task of identifying which action is happening in a given sequence of frames. Traditional approaches rely on handcrafted features and domain specific algorithms, often resulting in limited accuracy. The substantial advances in deep learning and the availability of larger datasets have allowed techniques that yield better performance without domain-specific knowledge to recognize actions being performed based on the raw information from video sequences. However, deep learning algorithms usually require very large labeled datasets for training, and due to their increased capacity their often overfit small data, hence providing lower generalization power. This work aims to explore deep learning in the context of small-sized action recognition datasets. Our goal is to achieve significant performance even in cases in which labeled data is not abundant. In order to do so, we investigate distinct network architectures, data pre-processing, and fusion methods, providing guidelines and good practices for using deep learning in small-sized datasets.Pontifícia Universidade Católica do Rio Grande do SulEscola PolitécnicaBrasilPUCRSPrograma de Pós-Graduação em Ciência da ComputaçãoBarros, Rodrigo Coelhohttp://lattes.cnpq.br/8172124241767828Santos Junior, Juarez Monteiro dos2018-05-15T11:30:05Z2018-03-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://tede2.pucrs.br/tede2/handle/tede/8036porinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da PUC_RSinstname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)instacron:PUC_RS2018-05-15T15:01:05Zoai:tede2.pucrs.br:tede/8036Biblioteca Digital de Teses e Dissertaçõeshttp://tede2.pucrs.br/tede2/PRIhttps://tede2.pucrs.br/oai/requestbiblioteca.central@pucrs.br||opendoar:2018-05-15T15:01:05Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)false |
| dc.title.none.fl_str_mv |
Analisando a viabilidade de deep learning para reconhecimento de ações em datasets pequenos |
| title |
Analisando a viabilidade de deep learning para reconhecimento de ações em datasets pequenos |
| spellingShingle |
Analisando a viabilidade de deep learning para reconhecimento de ações em datasets pequenos Santos Junior, Juarez Monteiro dos Aprendizado de Máquina Redes Neurais Redes Neurais Convolucionais Reconhecimento de Ações Machine Learning Neural Networks Convolutional Neural Networks Action Recognition CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO |
| title_short |
Analisando a viabilidade de deep learning para reconhecimento de ações em datasets pequenos |
| title_full |
Analisando a viabilidade de deep learning para reconhecimento de ações em datasets pequenos |
| title_fullStr |
Analisando a viabilidade de deep learning para reconhecimento de ações em datasets pequenos |
| title_full_unstemmed |
Analisando a viabilidade de deep learning para reconhecimento de ações em datasets pequenos |
| title_sort |
Analisando a viabilidade de deep learning para reconhecimento de ações em datasets pequenos |
| author |
Santos Junior, Juarez Monteiro dos |
| author_facet |
Santos Junior, Juarez Monteiro dos |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Barros, Rodrigo Coelho http://lattes.cnpq.br/8172124241767828 |
| dc.contributor.author.fl_str_mv |
Santos Junior, Juarez Monteiro dos |
| dc.subject.por.fl_str_mv |
Aprendizado de Máquina Redes Neurais Redes Neurais Convolucionais Reconhecimento de Ações Machine Learning Neural Networks Convolutional Neural Networks Action Recognition CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO |
| topic |
Aprendizado de Máquina Redes Neurais Redes Neurais Convolucionais Reconhecimento de Ações Machine Learning Neural Networks Convolutional Neural Networks Action Recognition CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO |
| description |
Reconhecimento de ação é a tarefa de visão computacional que identifica qual ação esta ocorrendo em dada sequência de frames. Abordagens tradicionais dependem de características extraídas dessas imagens e algoritmos específicos de domínio, muitas vezes resultando em uma precisão limitada. Os avanços substanciais na aprendizagem profunda e a disponibilidade de conjuntos de dados maiores permitiram que técnicas produzam um desempenho sem conhecimento específico do domínio para reconhecer as ações que estão sendo realizadas, tendo como base apenas sequências de vídeo. No entanto, os algoritmos de aprendizagem profunda geralmente requerem conjuntos de dados rotulados muito grandes para o treinamento. Devido à sua maior capacidade, tais algoritmos geralmente sofrem com overfitting em conjunto de dados pequenos, proporcionando assim um menor poder de generalização. Este trabalho tem como objetivo explorar a aprendizagem profunda no contexto de conjuntos de dados pequenos para reconhecimento de ações. Nosso objetivo é alcançar resultados, mesmo nos casos em que os dados rotulados não sejam abundantes. Para isso, investigamos diferentes arquiteturas profundas, diferentes métodos de processamento, e diferentes métodos de fusão, fornecendo diretrizes e boas práticas para o aprendizado profundo em conjuntos de dados de tamanho pequeno. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-05-15T11:30:05Z 2018-03-06 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://tede2.pucrs.br/tede2/handle/tede/8036 |
| url |
http://tede2.pucrs.br/tede2/handle/tede/8036 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Pontifícia Universidade Católica do Rio Grande do Sul Escola Politécnica Brasil PUCRS Programa de Pós-Graduação em Ciência da Computação |
| publisher.none.fl_str_mv |
Pontifícia Universidade Católica do Rio Grande do Sul Escola Politécnica Brasil PUCRS Programa de Pós-Graduação em Ciência da Computação |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da PUC_RS instname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) instacron:PUC_RS |
| instname_str |
Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) |
| instacron_str |
PUC_RS |
| institution |
PUC_RS |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da PUC_RS |
| collection |
Biblioteca Digital de Teses e Dissertações da PUC_RS |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) |
| repository.mail.fl_str_mv |
biblioteca.central@pucrs.br|| |
| _version_ |
1850041289500786688 |