Reconhecimento facial e FNIRS para a detecção de traços de emoção aplicados a jogos sérios

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Souza Júnior, Milton Machado de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Pontifícia Universidade Católica do Rio Grande do Sul
Escola Politécnica
Brasil
PUCRS
Programa de Pós-Graduação em Engenharia Elétrica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://tede2.pucrs.br/tede2/handle/tede/8452
Resumo: O desempenho no aprendizado de escolares está diretamente ligado ao bem-estar do mesmo, o que consolida a necessidade da criação de ferramentas capazes de observar traços de emoção durante o desenvolvimento de atividades específicas. Aliando jogos educacionais à observação de emoções, pode-se garantir que as atividades de aprendizado sejam mais prazerosas, melhorando a eficiência dos escolares. Para observar traços de emoções, deve-se evocá-las atentando para que estas estejam em destaque para a metodologia utilizada para a observação. Nesta pesquisa, usam-se duas formas de observação dos traços de emoção: micro expressões faciais e resposta hemodinâmicas do córtex cerebral. Na busca de evidências de emoções, utilizam-se métodos e protocolos de evocação dos traços de emoções, onde são utilizadas imagens fortes, responsáveis por provocar reações emocionais. Com a construção de um paradigma, pode-se observar a influência da sequência das imagens, usadas no exame, na variação de resposta das percepções emocionais.Foram observadas emoções positivas, negativas e neutras, relacionando-as aos traços de expressão. O estudo se limita a diferenciar estas três emoções, que são possíveis de se distinguir a partir de análise fisiológica. Para tanto, utilizaram-se câmeras e sensores óticos, respectivamente, para reconhecer micro expressões da face e respostas hemodinâmicas corticais. Estas emoções foram classificados a partir de um método de inteligência artificial cuja entrada são os traços emocionais. Este método cria um conjunto de padrões de respostas para cada uma das emoções, classificando a emoção atual do participante. A possibilidade de gerar índices emocionais para uma atividade fim, amplia em muito o ensino de jogos sérios, mas também fortalece o uso deste método de reconhecimento em outras aplicações. A partir da união das duas metodologias de reconhecimentos fisiológicos, obteve-se um método robusto de classificação das emoções, com taxa de 77,2% de acerto.
id P_RS_6ad4ff6bb62acab3fc96ec88939b96f3
oai_identifier_str oai:tede2.pucrs.br:tede/8452
network_acronym_str P_RS
network_name_str Biblioteca Digital de Teses e Dissertações da PUC_RS
repository_id_str
spelling Reconhecimento facial e FNIRS para a detecção de traços de emoção aplicados a jogos sériosJogos SériosReconhecimento FacialFNIRSEmoçôesClassificadoresSerius GamesFacial RecognitionFNIRSEmotionsClassifiersENGENHARIASO desempenho no aprendizado de escolares está diretamente ligado ao bem-estar do mesmo, o que consolida a necessidade da criação de ferramentas capazes de observar traços de emoção durante o desenvolvimento de atividades específicas. Aliando jogos educacionais à observação de emoções, pode-se garantir que as atividades de aprendizado sejam mais prazerosas, melhorando a eficiência dos escolares. Para observar traços de emoções, deve-se evocá-las atentando para que estas estejam em destaque para a metodologia utilizada para a observação. Nesta pesquisa, usam-se duas formas de observação dos traços de emoção: micro expressões faciais e resposta hemodinâmicas do córtex cerebral. Na busca de evidências de emoções, utilizam-se métodos e protocolos de evocação dos traços de emoções, onde são utilizadas imagens fortes, responsáveis por provocar reações emocionais. Com a construção de um paradigma, pode-se observar a influência da sequência das imagens, usadas no exame, na variação de resposta das percepções emocionais.Foram observadas emoções positivas, negativas e neutras, relacionando-as aos traços de expressão. O estudo se limita a diferenciar estas três emoções, que são possíveis de se distinguir a partir de análise fisiológica. Para tanto, utilizaram-se câmeras e sensores óticos, respectivamente, para reconhecer micro expressões da face e respostas hemodinâmicas corticais. Estas emoções foram classificados a partir de um método de inteligência artificial cuja entrada são os traços emocionais. Este método cria um conjunto de padrões de respostas para cada uma das emoções, classificando a emoção atual do participante. A possibilidade de gerar índices emocionais para uma atividade fim, amplia em muito o ensino de jogos sérios, mas também fortalece o uso deste método de reconhecimento em outras aplicações. A partir da união das duas metodologias de reconhecimentos fisiológicos, obteve-se um método robusto de classificação das emoções, com taxa de 77,2% de acerto.This work aims to improve the recognition of emotional responses to different stimuli that provoke alterations into humans. Said alterations can be measured through several tools such as Magnetic Resonance Imaging, Functional Near Infrared Spectroscopy (fNIRS), Electroencephalography (EEG) and Facial Recognition. In this work, we used a combination of the fNIRS system, which measures the variation of hemoglobin oxygenation, and facial recognition tools. The participants were stimulated with a sequence of images from the IAPS database, which are labeled with the weighted emotions they provoke. This allowed the training of a classifier that was capable of predicting the emotion that was experienced by the user during the activity performed. This article covers the recognition of positive, negative and neutral emotions using classifiers, created in Matlab, that are based on participant physiological responses. The combination of fNIRS, facial recognition and machine learning supported the creation of a predictor with 77.2% correct classification rate.Pontifícia Universidade Católica do Rio Grande do SulEscola PolitécnicaBrasilPUCRSPrograma de Pós-Graduação em Engenharia ElétricaAzevedo, Dario Francisco Guimarães dehttp://lattes.cnpq.br/9298232237219641Souza Júnior, Milton Machado de2019-02-18T13:49:44Z2019-01-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://tede2.pucrs.br/tede2/handle/tede/8452porinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da PUC_RSinstname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)instacron:PUC_RS2019-02-18T15:00:46Zoai:tede2.pucrs.br:tede/8452Biblioteca Digital de Teses e Dissertaçõeshttp://tede2.pucrs.br/tede2/PRIhttps://tede2.pucrs.br/oai/requestbiblioteca.central@pucrs.br||opendoar:2019-02-18T15:00:46Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)false
dc.title.none.fl_str_mv Reconhecimento facial e FNIRS para a detecção de traços de emoção aplicados a jogos sérios
title Reconhecimento facial e FNIRS para a detecção de traços de emoção aplicados a jogos sérios
spellingShingle Reconhecimento facial e FNIRS para a detecção de traços de emoção aplicados a jogos sérios
Souza Júnior, Milton Machado de
Jogos Sérios
Reconhecimento Facial
FNIRS
Emoçôes
Classificadores
Serius Games
Facial Recognition
FNIRS
Emotions
Classifiers
ENGENHARIAS
title_short Reconhecimento facial e FNIRS para a detecção de traços de emoção aplicados a jogos sérios
title_full Reconhecimento facial e FNIRS para a detecção de traços de emoção aplicados a jogos sérios
title_fullStr Reconhecimento facial e FNIRS para a detecção de traços de emoção aplicados a jogos sérios
title_full_unstemmed Reconhecimento facial e FNIRS para a detecção de traços de emoção aplicados a jogos sérios
title_sort Reconhecimento facial e FNIRS para a detecção de traços de emoção aplicados a jogos sérios
author Souza Júnior, Milton Machado de
author_facet Souza Júnior, Milton Machado de
author_role author
dc.contributor.none.fl_str_mv Azevedo, Dario Francisco Guimarães de
http://lattes.cnpq.br/9298232237219641
dc.contributor.author.fl_str_mv Souza Júnior, Milton Machado de
dc.subject.por.fl_str_mv Jogos Sérios
Reconhecimento Facial
FNIRS
Emoçôes
Classificadores
Serius Games
Facial Recognition
FNIRS
Emotions
Classifiers
ENGENHARIAS
topic Jogos Sérios
Reconhecimento Facial
FNIRS
Emoçôes
Classificadores
Serius Games
Facial Recognition
FNIRS
Emotions
Classifiers
ENGENHARIAS
description O desempenho no aprendizado de escolares está diretamente ligado ao bem-estar do mesmo, o que consolida a necessidade da criação de ferramentas capazes de observar traços de emoção durante o desenvolvimento de atividades específicas. Aliando jogos educacionais à observação de emoções, pode-se garantir que as atividades de aprendizado sejam mais prazerosas, melhorando a eficiência dos escolares. Para observar traços de emoções, deve-se evocá-las atentando para que estas estejam em destaque para a metodologia utilizada para a observação. Nesta pesquisa, usam-se duas formas de observação dos traços de emoção: micro expressões faciais e resposta hemodinâmicas do córtex cerebral. Na busca de evidências de emoções, utilizam-se métodos e protocolos de evocação dos traços de emoções, onde são utilizadas imagens fortes, responsáveis por provocar reações emocionais. Com a construção de um paradigma, pode-se observar a influência da sequência das imagens, usadas no exame, na variação de resposta das percepções emocionais.Foram observadas emoções positivas, negativas e neutras, relacionando-as aos traços de expressão. O estudo se limita a diferenciar estas três emoções, que são possíveis de se distinguir a partir de análise fisiológica. Para tanto, utilizaram-se câmeras e sensores óticos, respectivamente, para reconhecer micro expressões da face e respostas hemodinâmicas corticais. Estas emoções foram classificados a partir de um método de inteligência artificial cuja entrada são os traços emocionais. Este método cria um conjunto de padrões de respostas para cada uma das emoções, classificando a emoção atual do participante. A possibilidade de gerar índices emocionais para uma atividade fim, amplia em muito o ensino de jogos sérios, mas também fortalece o uso deste método de reconhecimento em outras aplicações. A partir da união das duas metodologias de reconhecimentos fisiológicos, obteve-se um método robusto de classificação das emoções, com taxa de 77,2% de acerto.
publishDate 2019
dc.date.none.fl_str_mv 2019-02-18T13:49:44Z
2019-01-15
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://tede2.pucrs.br/tede2/handle/tede/8452
url http://tede2.pucrs.br/tede2/handle/tede/8452
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pontifícia Universidade Católica do Rio Grande do Sul
Escola Politécnica
Brasil
PUCRS
Programa de Pós-Graduação em Engenharia Elétrica
publisher.none.fl_str_mv Pontifícia Universidade Católica do Rio Grande do Sul
Escola Politécnica
Brasil
PUCRS
Programa de Pós-Graduação em Engenharia Elétrica
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da PUC_RS
instname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
instacron:PUC_RS
instname_str Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
instacron_str PUC_RS
institution PUC_RS
reponame_str Biblioteca Digital de Teses e Dissertações da PUC_RS
collection Biblioteca Digital de Teses e Dissertações da PUC_RS
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
repository.mail.fl_str_mv biblioteca.central@pucrs.br||
_version_ 1850041292884541440