Exportação concluída — 

Geometric deep learning for functional neuroimaging analysis

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Marcon, Matheus Zampieri
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Pontifícia Universidade Católica do Rio Grande do Sul
Escola Politécnica
Brasil
PUCRS
Programa de Pós-Graduação em Ciência da Computação
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://tede2.pucrs.br/tede2/handle/tede/9762
Resumo: The study of the human brain connectome, a complex set of cerebral network relationships associating structure and functionality, has seen a growing interest in the field of neuroimaging over the last decade. Deep learning techniques constitute the state-ofthe-art for neuroimaging classification tasks on different neurological disorders, providing in-depth analysis into the inherent characteristics of brain activation and connectivity without the need for prior feature selection. However, convolutional operations of traditional deep networks affect fixed regions of elements during learning, whereas connectome data is best represented in the form of graphs, with spatially dispersed elements. We make use of geometric deep learning (GDL) for the analysis of whole-brain functional magnetic resonance imaging (fMRI) connectome data to identify and extract high-level feature representations of the cerebral network dynamics involved in human cognition. Our findings suggest that GDL techniques can outperform state-of-the-art models for classification of fMRI data while providing a simple framework for result analysis.
id P_RS_7f6fb493d153eea8d18c5e67732876f6
oai_identifier_str oai:tede2.pucrs.br:tede/9762
network_acronym_str P_RS
network_name_str Biblioteca Digital de Teses e Dissertações da PUC_RS
repository_id_str
spelling Geometric deep learning for functional neuroimaging analysisAprendizado profundo geométrico para análise de neuroimagens funcionaisArtificial IntelligenceNeuroimagingfMRIDeep Neural NetworksInteligência ArtificialNeuroimagemRedes Neurais ProfundasCIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAOThe study of the human brain connectome, a complex set of cerebral network relationships associating structure and functionality, has seen a growing interest in the field of neuroimaging over the last decade. Deep learning techniques constitute the state-ofthe-art for neuroimaging classification tasks on different neurological disorders, providing in-depth analysis into the inherent characteristics of brain activation and connectivity without the need for prior feature selection. However, convolutional operations of traditional deep networks affect fixed regions of elements during learning, whereas connectome data is best represented in the form of graphs, with spatially dispersed elements. We make use of geometric deep learning (GDL) for the analysis of whole-brain functional magnetic resonance imaging (fMRI) connectome data to identify and extract high-level feature representations of the cerebral network dynamics involved in human cognition. Our findings suggest that GDL techniques can outperform state-of-the-art models for classification of fMRI data while providing a simple framework for result analysis.O estudo do conectoma cerebral humano, um conjunto complexo de relações entre redes neurais cerebrais que associam estrutura cerebral e funcionalidade, têm recebido crescente interesse na área de neuroimagem ao longo da última década. Técnicas de aprendizado profundo constituem o estado da arte para tarefas de classificação de diferentes disordens neurológicas a partir de neuroimagens, proporcionando análises em profundidade acerca de características inerentes da atividade e conectividade cerebrais sem a necessidade prévia de seleção de features. No entanto, operações convolucionais de redes profundas tradicionais são aplicadas a regiões fixas de elementos durante o aprendizado, enquanto dados de conectoma cerebral são melhor representados na forma de grafos, com elementos espacialmente dispersos. Neste trabalho, fazemos uso de técnicas de aprendizado profundo geométrico para análise de dados de conectoma de imagens de ressonância magnética funcional (fMRI), buscando a identificação e extração de representações de características de alto nível das dinâmicas de redes cerebrais envolvidas na cognição humana. Nossas conclusões sugerem que as técnicas investigadas podem superar o estado da arte relativo a modelos de classificação de dados de fMRI além de possibilitar uma metodologia simples para análise de resultados.Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqPontifícia Universidade Católica do Rio Grande do SulEscola PolitécnicaBrasilPUCRSPrograma de Pós-Graduação em Ciência da ComputaçãoMeneguzzi, Felipe Rechhttp://lattes.cnpq.br/5973550650941724Marcon, Matheus Zampieri2021-06-25T18:11:20Z2021-03-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://tede2.pucrs.br/tede2/handle/tede/9762enginfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da PUC_RSinstname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)instacron:PUC_RS2021-06-26T15:00:17Zoai:tede2.pucrs.br:tede/9762Biblioteca Digital de Teses e Dissertaçõeshttp://tede2.pucrs.br/tede2/PRIhttps://tede2.pucrs.br/oai/requestbiblioteca.central@pucrs.br||opendoar:2021-06-26T15:00:17Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)false
dc.title.none.fl_str_mv Geometric deep learning for functional neuroimaging analysis
Aprendizado profundo geométrico para análise de neuroimagens funcionais
title Geometric deep learning for functional neuroimaging analysis
spellingShingle Geometric deep learning for functional neuroimaging analysis
Marcon, Matheus Zampieri
Artificial Intelligence
Neuroimaging
fMRI
Deep Neural Networks
Inteligência Artificial
Neuroimagem
Redes Neurais Profundas
CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO
title_short Geometric deep learning for functional neuroimaging analysis
title_full Geometric deep learning for functional neuroimaging analysis
title_fullStr Geometric deep learning for functional neuroimaging analysis
title_full_unstemmed Geometric deep learning for functional neuroimaging analysis
title_sort Geometric deep learning for functional neuroimaging analysis
author Marcon, Matheus Zampieri
author_facet Marcon, Matheus Zampieri
author_role author
dc.contributor.none.fl_str_mv Meneguzzi, Felipe Rech
http://lattes.cnpq.br/5973550650941724
dc.contributor.author.fl_str_mv Marcon, Matheus Zampieri
dc.subject.por.fl_str_mv Artificial Intelligence
Neuroimaging
fMRI
Deep Neural Networks
Inteligência Artificial
Neuroimagem
Redes Neurais Profundas
CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO
topic Artificial Intelligence
Neuroimaging
fMRI
Deep Neural Networks
Inteligência Artificial
Neuroimagem
Redes Neurais Profundas
CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO
description The study of the human brain connectome, a complex set of cerebral network relationships associating structure and functionality, has seen a growing interest in the field of neuroimaging over the last decade. Deep learning techniques constitute the state-ofthe-art for neuroimaging classification tasks on different neurological disorders, providing in-depth analysis into the inherent characteristics of brain activation and connectivity without the need for prior feature selection. However, convolutional operations of traditional deep networks affect fixed regions of elements during learning, whereas connectome data is best represented in the form of graphs, with spatially dispersed elements. We make use of geometric deep learning (GDL) for the analysis of whole-brain functional magnetic resonance imaging (fMRI) connectome data to identify and extract high-level feature representations of the cerebral network dynamics involved in human cognition. Our findings suggest that GDL techniques can outperform state-of-the-art models for classification of fMRI data while providing a simple framework for result analysis.
publishDate 2021
dc.date.none.fl_str_mv 2021-06-25T18:11:20Z
2021-03-19
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://tede2.pucrs.br/tede2/handle/tede/9762
url http://tede2.pucrs.br/tede2/handle/tede/9762
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pontifícia Universidade Católica do Rio Grande do Sul
Escola Politécnica
Brasil
PUCRS
Programa de Pós-Graduação em Ciência da Computação
publisher.none.fl_str_mv Pontifícia Universidade Católica do Rio Grande do Sul
Escola Politécnica
Brasil
PUCRS
Programa de Pós-Graduação em Ciência da Computação
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da PUC_RS
instname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
instacron:PUC_RS
instname_str Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
instacron_str PUC_RS
institution PUC_RS
reponame_str Biblioteca Digital de Teses e Dissertações da PUC_RS
collection Biblioteca Digital de Teses e Dissertações da PUC_RS
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
repository.mail.fl_str_mv biblioteca.central@pucrs.br||
_version_ 1850041304336039936