Assessing perceptual data in images : a computational aesthetics approach

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Dalmoro, Bruna Martini
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Pontifícia Universidade Católica do Rio Grande do Sul
Escola Politécnica
Brasil
PUCRS
Programa de Pós-Graduação em Ciência da Computação
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://tede2.pucrs.br/tede2/handle/tede/10885
Resumo: Human perception is the process that captures measurable physical stimuli and converts them into understanding information about the world. The study of human perception, regarding visual stimuli, is a wide area of research that has been studied in a multidisciplinar way. With the various advances in computing and the capacity for processing and analyzing images, human perception began to be studied computationally. One of the áreas that addresses this discussion is the area of computational aesthetics, a subfield of computational vision, which aims to research computational methods that can provide aesthetic decisions similar to those of humans. One of the applications of computational aesthetics today is the prediction of image and video ratings and their popularity. Another area much explored by computational aesthetics is the area of art and painting analysis. To build these algorithms, visual features drawn from images are used as a way to describe their content. The interpretability of these features is of great value for areas such as empirical and experimental aesthetics, as well as for generating insights from the found results. In the presente work, we explore three different problems contextualized in the computational aesthetic areas. In the first problem, we developed a model to predict the popularity of videos posted on Facebook using a dataset of visual features. In the second problem, we also use visual features and image category information (animation or live-action) to create a content-based movie recommendation system. In the third problem, we propose a methodology to identify and suggest influencing relationships between painters based on visual features extracted from the faces of their artworks. Our main objectives in this work are: to explore diferente problems involving different types of images from the point of view of computational aesthetics; to use only visual features to solve problems as a way to test the power and usefulness of this information in different applications; and to use only interpretable visual features to generate insights into the area of aesthetics and related areas. The results found in this work suggest that visual features, extracted from images and videos, are important resources for solving the proposed problems. In addition, the results indicate that the proposed methodologies are promising in trying to answer mathematically, in accordance with human perception, as intended by the area of computational aesthetics, questions about perception analysis. In addition, our methods allow to generate insights for aesthetic research when visual features are interpretable
id P_RS_dddbca9ec6102a6818d8013f9f718479
oai_identifier_str oai:tede2.pucrs.br:tede/10885
network_acronym_str P_RS
network_name_str Biblioteca Digital de Teses e Dissertações da PUC_RS
repository_id_str
spelling Assessing perceptual data in images : a computational aesthetics approachAvaliando dados de percepcao em imagens : uma abordagem de estetica computacionalComputational AestheticsPerceptionVisual FeaturesComputação EstéticaPercepçãoFeatures VisuaisCIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAOHuman perception is the process that captures measurable physical stimuli and converts them into understanding information about the world. The study of human perception, regarding visual stimuli, is a wide area of research that has been studied in a multidisciplinar way. With the various advances in computing and the capacity for processing and analyzing images, human perception began to be studied computationally. One of the áreas that addresses this discussion is the area of computational aesthetics, a subfield of computational vision, which aims to research computational methods that can provide aesthetic decisions similar to those of humans. One of the applications of computational aesthetics today is the prediction of image and video ratings and their popularity. Another area much explored by computational aesthetics is the area of art and painting analysis. To build these algorithms, visual features drawn from images are used as a way to describe their content. The interpretability of these features is of great value for areas such as empirical and experimental aesthetics, as well as for generating insights from the found results. In the presente work, we explore three different problems contextualized in the computational aesthetic areas. In the first problem, we developed a model to predict the popularity of videos posted on Facebook using a dataset of visual features. In the second problem, we also use visual features and image category information (animation or live-action) to create a content-based movie recommendation system. In the third problem, we propose a methodology to identify and suggest influencing relationships between painters based on visual features extracted from the faces of their artworks. Our main objectives in this work are: to explore diferente problems involving different types of images from the point of view of computational aesthetics; to use only visual features to solve problems as a way to test the power and usefulness of this information in different applications; and to use only interpretable visual features to generate insights into the area of aesthetics and related areas. The results found in this work suggest that visual features, extracted from images and videos, are important resources for solving the proposed problems. In addition, the results indicate that the proposed methodologies are promising in trying to answer mathematically, in accordance with human perception, as intended by the area of computational aesthetics, questions about perception analysis. In addition, our methods allow to generate insights for aesthetic research when visual features are interpretableA percepção humana é o processo que captura estímulos físicos mensuráveis e os converte em compreensão do mundo. O estudo da percepção humana, no que tange estímulos visuais, é uma ampla área de pesquisa que tem sido estudada de forma multidisciplinar. Com os diversos avanços da computação e da capacidade de processamento e análise de imagens, a percepção humana passou a ser estudada computacionalmente. Uma das áreas que aborda essa discussão é a área da estética computacional, um subcampo da visão computacional, que visa pesquisar métodos computacionais que tomem decisões estéticas semelhantes às dos humanos. Uma das aplicações da estética computacional hoje é a previsão de classificações de imagens e vídeos e sua popularidade. Outra área muito explorada pela estética computacional é a área de análise de artes e pinturas. Para construir esses algoritmos, características (features) visuais extraídas de imagens são usadas como forma de descrever seu conteúdo. A interpretabilidade dessas features é de grande valor para áreas como a estética empírica e experimental, assim como para gerar insights a partir dos resultados encontrados. No presente trabalho, exploramos três problemas diferentes com a abordagem de estética computacional. No primeiro problema, desenvolvemos um modelo para prever a popularidade de vídeos postados no Facebook usando um conjunto de dados de features visuais. No segundo problema, usamos também features visuais e informações de categoria de imagem (animação ou live-action) para criar um sistema de recomendação de filmes, baseado em conteúdo. No terceiro problema, propomos uma metodologia para identificar e sugerir relações de influência entre pintores a partir de features visuais extraídas das faces de suas obras de arte. Nossos principais objetivos neste trabalho são: explorar diferentes problemas envolvendo diferentes tipos de imagens do ponto de vista da estética computacional; usar apenas features visuais para resolver problemas como forma de testar o poder e a utilidade dessas informações em diferentes aplicações; e usar apenas features visuais interpretáveis para gerar insights sobre a área de estética e áreas relacionadas. Os resultados encontrados neste trabalho sugerem que as features visuais, extraídas de imagens e vídeos, são recursos importantes para a solução dos problemas propostos. Além disso, os resultados indicam que as metodologias propostas são promissoras em tentar responder matematicamente em acordo com a percepção humana, conforme pretende a área de estética computacional, além de permitir gerar insights para pesquisas estéticas quando as features visuais são interpretáveis.Pontifícia Universidade Católica do Rio Grande do SulEscola PolitécnicaBrasilPUCRSPrograma de Pós-Graduação em Ciência da ComputaçãoMusse, Soraia Raupp Mussehttp://lattes.cnpq.br/2302314954133011Dalmoro, Bruna Martini2023-07-04T20:33:24Z2021-08-13info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://tede2.pucrs.br/tede2/handle/tede/10885enginfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da PUC_RSinstname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)instacron:PUC_RS2023-07-04T23:00:18Zoai:tede2.pucrs.br:tede/10885Biblioteca Digital de Teses e Dissertaçõeshttp://tede2.pucrs.br/tede2/PRIhttps://tede2.pucrs.br/oai/requestbiblioteca.central@pucrs.br||opendoar:2023-07-04T23:00:18Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)false
dc.title.none.fl_str_mv Assessing perceptual data in images : a computational aesthetics approach
Avaliando dados de percepcao em imagens : uma abordagem de estetica computacional
title Assessing perceptual data in images : a computational aesthetics approach
spellingShingle Assessing perceptual data in images : a computational aesthetics approach
Dalmoro, Bruna Martini
Computational Aesthetics
Perception
Visual Features
Computação Estética
Percepção
Features Visuais
CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO
title_short Assessing perceptual data in images : a computational aesthetics approach
title_full Assessing perceptual data in images : a computational aesthetics approach
title_fullStr Assessing perceptual data in images : a computational aesthetics approach
title_full_unstemmed Assessing perceptual data in images : a computational aesthetics approach
title_sort Assessing perceptual data in images : a computational aesthetics approach
author Dalmoro, Bruna Martini
author_facet Dalmoro, Bruna Martini
author_role author
dc.contributor.none.fl_str_mv Musse, Soraia Raupp Musse
http://lattes.cnpq.br/2302314954133011
dc.contributor.author.fl_str_mv Dalmoro, Bruna Martini
dc.subject.por.fl_str_mv Computational Aesthetics
Perception
Visual Features
Computação Estética
Percepção
Features Visuais
CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO
topic Computational Aesthetics
Perception
Visual Features
Computação Estética
Percepção
Features Visuais
CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO
description Human perception is the process that captures measurable physical stimuli and converts them into understanding information about the world. The study of human perception, regarding visual stimuli, is a wide area of research that has been studied in a multidisciplinar way. With the various advances in computing and the capacity for processing and analyzing images, human perception began to be studied computationally. One of the áreas that addresses this discussion is the area of computational aesthetics, a subfield of computational vision, which aims to research computational methods that can provide aesthetic decisions similar to those of humans. One of the applications of computational aesthetics today is the prediction of image and video ratings and their popularity. Another area much explored by computational aesthetics is the area of art and painting analysis. To build these algorithms, visual features drawn from images are used as a way to describe their content. The interpretability of these features is of great value for areas such as empirical and experimental aesthetics, as well as for generating insights from the found results. In the presente work, we explore three different problems contextualized in the computational aesthetic areas. In the first problem, we developed a model to predict the popularity of videos posted on Facebook using a dataset of visual features. In the second problem, we also use visual features and image category information (animation or live-action) to create a content-based movie recommendation system. In the third problem, we propose a methodology to identify and suggest influencing relationships between painters based on visual features extracted from the faces of their artworks. Our main objectives in this work are: to explore diferente problems involving different types of images from the point of view of computational aesthetics; to use only visual features to solve problems as a way to test the power and usefulness of this information in different applications; and to use only interpretable visual features to generate insights into the area of aesthetics and related areas. The results found in this work suggest that visual features, extracted from images and videos, are important resources for solving the proposed problems. In addition, the results indicate that the proposed methodologies are promising in trying to answer mathematically, in accordance with human perception, as intended by the area of computational aesthetics, questions about perception analysis. In addition, our methods allow to generate insights for aesthetic research when visual features are interpretable
publishDate 2021
dc.date.none.fl_str_mv 2021-08-13
2023-07-04T20:33:24Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://tede2.pucrs.br/tede2/handle/tede/10885
url https://tede2.pucrs.br/tede2/handle/tede/10885
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pontifícia Universidade Católica do Rio Grande do Sul
Escola Politécnica
Brasil
PUCRS
Programa de Pós-Graduação em Ciência da Computação
publisher.none.fl_str_mv Pontifícia Universidade Católica do Rio Grande do Sul
Escola Politécnica
Brasil
PUCRS
Programa de Pós-Graduação em Ciência da Computação
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da PUC_RS
instname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
instacron:PUC_RS
instname_str Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
instacron_str PUC_RS
institution PUC_RS
reponame_str Biblioteca Digital de Teses e Dissertações da PUC_RS
collection Biblioteca Digital de Teses e Dissertações da PUC_RS
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
repository.mail.fl_str_mv biblioteca.central@pucrs.br||
_version_ 1850041314430681088