Computational aesthetics in architecture: a framework for quantifying preferences using computer vision and artificial neural networks
| Ano de defesa: | 2024 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Presbiteriana Mackenzie
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://dspace.mackenzie.br/handle/10899/39572 |
Resumo: | This research develops a computational aesthetics framework to predict the hedonic response of groups of people to architectural images. The theoretical basis relies on classical aesthetic theories of parts to whole, such as Alberti´s, combined with early 20th-century quantitative aesthetic metrics by G. D. Birkhoff and digitally-enabled contemporary technologies, such as Computer Vision (CV) and Artificial Neural Networks (ANN). This work focuses on the visual perception of architecture through perspectival images. CV is applied to identify parts in images, such as walls, doors, and windows. These parts are reorganized in diagrams to analyze the number of parts (DSP) and quantify their relations to the whole (DCG). The quantities derived from the diagrams inform two methods for quantifying and predicting the hedonic response of other images: 1. Birkhoff's Aesthetic Measure (AM) formula is adopted to reduce the complicated aesthetic experience into numbers. CV is applied to automate it, speeding up its application and making it unambiguous. The formula is calibrated to fit the audience's preferences better, producing a Calibrated Aesthetic Measure (cAM). 2. ANNs are trained because of their ability to find patterns in data. The numerical output from the DCG and DSP, the AM, and the cAM are used as inputs to train the model. This model is named the Predicted Hedonic Response (PHR) model. The described framework requires surveying specific audiences to incorporate their bias. Therefore, this research does not aim to develop a universal model of aesthetic evaluation but to embrace the specificity of each group of individuals. The framework is applied to navigate design spaces for parametric models and generative adversarial networks. The thesis discusses the implications of quantification in architectural evaluation, parts to whole relationship paradigms, and the role of images and playing in architecture. Finally, it concludes that the computational aesthetics framework build is a heuristic for predicting the aesthetic preferences of groups. |
| id |
UPM_95dc8c1b3ad212e1ea2dcc20ff03816b |
|---|---|
| oai_identifier_str |
oai:dspace.mackenzie.br:10899/39572 |
| network_acronym_str |
UPM |
| network_name_str |
Repositório Digital do Mackenzie |
| repository_id_str |
|
| spelling |
Sardenberg, Victor CarrilhoBecker, Mirco2024-10-09T18:11:02Z2024-10-09T18:11:02Z2024-07-04This research develops a computational aesthetics framework to predict the hedonic response of groups of people to architectural images. The theoretical basis relies on classical aesthetic theories of parts to whole, such as Alberti´s, combined with early 20th-century quantitative aesthetic metrics by G. D. Birkhoff and digitally-enabled contemporary technologies, such as Computer Vision (CV) and Artificial Neural Networks (ANN). This work focuses on the visual perception of architecture through perspectival images. CV is applied to identify parts in images, such as walls, doors, and windows. These parts are reorganized in diagrams to analyze the number of parts (DSP) and quantify their relations to the whole (DCG). The quantities derived from the diagrams inform two methods for quantifying and predicting the hedonic response of other images: 1. Birkhoff's Aesthetic Measure (AM) formula is adopted to reduce the complicated aesthetic experience into numbers. CV is applied to automate it, speeding up its application and making it unambiguous. The formula is calibrated to fit the audience's preferences better, producing a Calibrated Aesthetic Measure (cAM). 2. ANNs are trained because of their ability to find patterns in data. The numerical output from the DCG and DSP, the AM, and the cAM are used as inputs to train the model. This model is named the Predicted Hedonic Response (PHR) model. The described framework requires surveying specific audiences to incorporate their bias. Therefore, this research does not aim to develop a universal model of aesthetic evaluation but to embrace the specificity of each group of individuals. The framework is applied to navigate design spaces for parametric models and generative adversarial networks. The thesis discusses the implications of quantification in architectural evaluation, parts to whole relationship paradigms, and the role of images and playing in architecture. Finally, it concludes that the computational aesthetics framework build is a heuristic for predicting the aesthetic preferences of groups.https://dspace.mackenzie.br/handle/10899/39572deengUniversidade Presbiteriana Mackenziecomputational aestheticsartificial neural networksaesthetic measureComputational aesthetics in architecture: a framework for quantifying preferences using computer vision and artificial neural networksinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Digital do Mackenzieinstname:Universidade Presbiteriana Mackenzie (MACKENZIE)instacron:MACKENZIEinfo:eu-repo/semantics/openAccesshttps://orcid.org/0000-0001-8488-2108http://lattes.cnpq.br/2463492214863820https://orcid.org/0000-0001-6089-0189Hoffman, HolgerNolte, Tobiashttps://orcid.org/0000-0002-9341-7723Castro, Luiz Guilherme Rivera dehttp://lattes.cnpq.br/3552510477284234https://orcid.org/0000-0002-0963-3002Guatelli, Igorhttp://lattes.cnpq.br/0684027099625255https://orcid.org/0000-0002-3937-8073In diesem Forschungsvorhaben wird ein computergestützte Vorgehensweise zur Vorhersage der ästhetischen hedonischen Reaktion von Personengruppen auf Architekturbilder entwickelt. Die theoretische Grundlage beruht auf klassischen ästhetischen Theorien, wie bspw. Alberties Theorie über die Beziehung zwischen Teilen und dem Ganzen. Diese Theorien werden kombiniert mit quantitativen ästhetischen Metriken von G. D. Birkhoff aus dem frühen 20. Jahrhundert sowie modernen digitalen Technologien wie Computer Vision (CV) und künstlichen neuronalen Netzen (ANN). Die Arbeit konzentriert sich auf die visuelle Wahrnehmung von Architektur durch perspektivische Bilder. CV wird angewendet, um Teile in Bildern zu identifizieren, z. B. Wände, Türen und Fenster. Diese Teile werden in Diagrammen reorganisiert, um die Anzahl der Teile zu analysieren (DSP) und ihre Beziehungen zum Ganzen zu quantifizieren (DCG). Die aus den Diagrammen abgeleiteten Größen dienen als Grundlage für zwei Methoden zur Quantifizierung und Vorhersage der hedonischen Reaktion auf andere Bilder: 1. Birkhoffs Formel für das ästhetische Maß (AM) wird verwendet, um die komplizierte ästhetische Erfahrung in Zahlen zu fassen. CV wird angewandt, um sie zu automatisieren, ihre Anwendung zu beschleunigen und sie eindeutig evaluierbar zu machen. Die Formel wird kalibriert, um den Vorlieben des Publikums besser gerecht zu werden, wodurch ein kalibriertes ästhetisches Maß (cAM) entsteht. 2. ANNs werden trainiert, um spezifische Muster in den Daten zu identifizieren. Für den Trainingsprozess des Modells werden die numerische Ausgabe von DCG und DSP, wie auch das AM und das cAM als Input verwendet. Dieses Modell wird als Predicted Hedonic Response (PHR)-Modell bezeichnet. Die beschriebene Computer-basiert Instrumentarium erfordert die Befragung bestimmter Zielgruppen und die Berücksichtigung ihrer Voreingenommenheit. Daher zielt diese Forschung nicht darauf ab, ein universelles Modell der ästhetischen Bewertung zu entwickeln, sondern die Besonderheiten jeweiliger Personengruppen einzubeziehen. Das Verfahren wird bei der Navigation durch Entwurfsräume parametrischer Modelle und generativer adversarialer Netzwerke angewendet. Die Arbeit diskutiert die Auswirkungen der Quantifizierung in der architektonischen Bewertung, Paradigmen der Beziehung zwischen Teilen und dem Ganzen und die Rolle von Bildern und Spielen in der Architektur. Abschließend wird die Schlussfolgerung gezogen, dass das entwickelte computerbasierte ästhetische Verfahren eine Heuristik zur Vorhersage der ästhetischen Präferenzen von Gruppen darstellt.computerästhetikkünstliche neuronale netzeasthetisches maßBrasilFaculdade de Arquitetura e Urbanismo (FAU)UPMArquitetura e UrbanismoCNPQ::CIENCIAS SOCIAIS APLICADAS::ARQUITETURA E URBANISMOLICENSElicense.txtlicense.txttext/plain; charset=utf-82269https://dspace.mackenzie.br/bitstreams/fe3d29c1-ea49-4fbf-959a-bc75abee77a9/downloadf0d4931322d30f6d2ee9ebafdf037c16MD51ORIGINALVictor Sardenberg....pdfVictor Sardenberg....pdfapplication/pdf29684800https://dspace.mackenzie.br/bitstreams/af37f4f8-88cb-4a69-8229-b04ca97356ab/download44c2e43c9b4e770887bbdee50a50293dMD52TEXTVictor Sardenberg....pdf.txtVictor Sardenberg....pdf.txtExtracted texttext/plain705900https://dspace.mackenzie.br/bitstreams/17e9db69-f955-497e-9b17-8eb668d33577/download2cc74be1ebc0f5e095365c4050257e3cMD53THUMBNAILVictor Sardenberg....pdf.jpgVictor Sardenberg....pdf.jpgGenerated Thumbnailimage/jpeg5089https://dspace.mackenzie.br/bitstreams/a3c2a081-7380-4a42-bebe-4eceed69950d/download7ec668edfc7894d9a616b04e89f86145MD5410899/395722024-10-10 03:01:27.219oai:dspace.mackenzie.br:10899/39572https://dspace.mackenzie.brBiblioteca Digital de Teses e Dissertaçõeshttp://tede.mackenzie.br/jspui/PRIhttps://adelpha-api.mackenzie.br/server/oai/repositorio@mackenzie.br||paola.damato@mackenzie.bropendoar:102772024-10-10T03:01:27Repositório Digital do Mackenzie - Universidade Presbiteriana Mackenzie (MACKENZIE)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKPGJyPjxicj4KQ29tIG8gYWNlaXRlIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlIFByZXNiaXRlcmlhbmEgTWFja2VuemllIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSBkaXN0cmlidWlyIHNldSB0cmFiYWxobyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIGVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgo8YnI+PGJyPgpBY2VpdGFuZG8gZXNzYSBsaWNlbsOnYSB2b2PDqiBjb25jb3JkYSBxdWUgYSBVbml2ZXJzaWRhZGUgUHJlc2JpdGVyaWFuYSBNYWNrZW56aWUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIG8gc2V1IHRyYWJhbGhvIHBhcmEgcXVhbHF1ZXIgbWVpbyBvdSBmb3JtYXRvIGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBkbyBzZXUgdHJhYmFsaG8gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgo8YnI+PGJyPgpDb25jb3JkYXLDoSBxdWUgc2V1IHRyYWJhbGhvIHRhbWLDqW0gc2Vyw6EgcmVnaWRvIHBlbGEgQ3JlYXRpdmUgQ29tbW9ucyBxdWUgTsODTyBwZXJtaXRlIG8gdXNvIGNvbWVyY2lhbCBvdSBxdWFscXVlciBhbHRlcmHDp8OjbyBkYSBvYnJhIHBvciB0ZXJjZWlyb3MgY29uZm9ybWUgZGVzY3JpdG8gZW0gPGEgaHJlZj0iaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8iIHRhcmdldD0iX2JsYW5rIj5odHRwczovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMtbmQvNC4wLzwvYT4uCjxicj48YnI+ClZvY8OqIGRlY2xhcmEgcXVlIHNldSB0cmFiYWxobyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBvIGRlcMOzc2l0byBkbyBzZXUgdHJhYmFsaG8gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCjxicj48YnI+CkNhc28gbyBzZXUgdHJhYmFsaG8gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6ogZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVuaXZlcnNpZGFkZSBQcmVzYml0ZXJpYW5hIE1hY2tlbnppZSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRvIHNldSB0cmFiYWxobyBvcmEgZGVwb3NpdGFkby4KPGJyPjxicj4KQ0FTTyBPIFRSQUJBTEhPIE9SQSBERVBPU0lUQURPIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ8ONTklPIE9VIEFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTsODTyBTRUpBIEEgVU5JVkVSU0lEQURFIFBSRVNCSVRFUklBTkEgTUFDS0VOWklFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KPGJyPjxicj4KQSBVbml2ZXJzaWRhZGUgUHJlc2JpdGVyaWFuYSBNYWNrZW56aWUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIGRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZG8gc2V1IHRyYWJhbGhvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg== |
| dc.title.none.fl_str_mv |
Computational aesthetics in architecture: a framework for quantifying preferences using computer vision and artificial neural networks |
| title |
Computational aesthetics in architecture: a framework for quantifying preferences using computer vision and artificial neural networks |
| spellingShingle |
Computational aesthetics in architecture: a framework for quantifying preferences using computer vision and artificial neural networks Sardenberg, Victor Carrilho computational aesthetics artificial neural networks aesthetic measure |
| title_short |
Computational aesthetics in architecture: a framework for quantifying preferences using computer vision and artificial neural networks |
| title_full |
Computational aesthetics in architecture: a framework for quantifying preferences using computer vision and artificial neural networks |
| title_fullStr |
Computational aesthetics in architecture: a framework for quantifying preferences using computer vision and artificial neural networks |
| title_full_unstemmed |
Computational aesthetics in architecture: a framework for quantifying preferences using computer vision and artificial neural networks |
| title_sort |
Computational aesthetics in architecture: a framework for quantifying preferences using computer vision and artificial neural networks |
| author |
Sardenberg, Victor Carrilho |
| author_facet |
Sardenberg, Victor Carrilho |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Sardenberg, Victor Carrilho |
| dc.contributor.advisor1.fl_str_mv |
Becker, Mirco |
| contributor_str_mv |
Becker, Mirco |
| dc.subject.por.fl_str_mv |
computational aesthetics artificial neural networks aesthetic measure |
| topic |
computational aesthetics artificial neural networks aesthetic measure |
| description |
This research develops a computational aesthetics framework to predict the hedonic response of groups of people to architectural images. The theoretical basis relies on classical aesthetic theories of parts to whole, such as Alberti´s, combined with early 20th-century quantitative aesthetic metrics by G. D. Birkhoff and digitally-enabled contemporary technologies, such as Computer Vision (CV) and Artificial Neural Networks (ANN). This work focuses on the visual perception of architecture through perspectival images. CV is applied to identify parts in images, such as walls, doors, and windows. These parts are reorganized in diagrams to analyze the number of parts (DSP) and quantify their relations to the whole (DCG). The quantities derived from the diagrams inform two methods for quantifying and predicting the hedonic response of other images: 1. Birkhoff's Aesthetic Measure (AM) formula is adopted to reduce the complicated aesthetic experience into numbers. CV is applied to automate it, speeding up its application and making it unambiguous. The formula is calibrated to fit the audience's preferences better, producing a Calibrated Aesthetic Measure (cAM). 2. ANNs are trained because of their ability to find patterns in data. The numerical output from the DCG and DSP, the AM, and the cAM are used as inputs to train the model. This model is named the Predicted Hedonic Response (PHR) model. The described framework requires surveying specific audiences to incorporate their bias. Therefore, this research does not aim to develop a universal model of aesthetic evaluation but to embrace the specificity of each group of individuals. The framework is applied to navigate design spaces for parametric models and generative adversarial networks. The thesis discusses the implications of quantification in architectural evaluation, parts to whole relationship paradigms, and the role of images and playing in architecture. Finally, it concludes that the computational aesthetics framework build is a heuristic for predicting the aesthetic preferences of groups. |
| publishDate |
2024 |
| dc.date.accessioned.fl_str_mv |
2024-10-09T18:11:02Z |
| dc.date.available.fl_str_mv |
2024-10-09T18:11:02Z |
| dc.date.issued.fl_str_mv |
2024-07-04 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://dspace.mackenzie.br/handle/10899/39572 |
| url |
https://dspace.mackenzie.br/handle/10899/39572 |
| dc.language.iso.fl_str_mv |
de eng |
| language_invalid_str_mv |
de |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Presbiteriana Mackenzie |
| publisher.none.fl_str_mv |
Universidade Presbiteriana Mackenzie |
| dc.source.none.fl_str_mv |
reponame:Repositório Digital do Mackenzie instname:Universidade Presbiteriana Mackenzie (MACKENZIE) instacron:MACKENZIE |
| instname_str |
Universidade Presbiteriana Mackenzie (MACKENZIE) |
| instacron_str |
MACKENZIE |
| institution |
MACKENZIE |
| reponame_str |
Repositório Digital do Mackenzie |
| collection |
Repositório Digital do Mackenzie |
| bitstream.url.fl_str_mv |
https://dspace.mackenzie.br/bitstreams/fe3d29c1-ea49-4fbf-959a-bc75abee77a9/download https://dspace.mackenzie.br/bitstreams/af37f4f8-88cb-4a69-8229-b04ca97356ab/download https://dspace.mackenzie.br/bitstreams/17e9db69-f955-497e-9b17-8eb668d33577/download https://dspace.mackenzie.br/bitstreams/a3c2a081-7380-4a42-bebe-4eceed69950d/download |
| bitstream.checksum.fl_str_mv |
f0d4931322d30f6d2ee9ebafdf037c16 44c2e43c9b4e770887bbdee50a50293d 2cc74be1ebc0f5e095365c4050257e3c 7ec668edfc7894d9a616b04e89f86145 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Digital do Mackenzie - Universidade Presbiteriana Mackenzie (MACKENZIE) |
| repository.mail.fl_str_mv |
repositorio@mackenzie.br||paola.damato@mackenzie.br |
| _version_ |
1851946006767206400 |