Modelagem de tempo de falha acelerado para sistemas reparáveis considerando fragilidade e diferentes funções de aceleração

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: Pereira, Edilenia Queiroz
Orientador(a): Alberto Gonzatto Junior, Oilson lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://hdl.handle.net/20.500.14289/22936
Resumo: Reliability analysis in accelerated life testing aims to understand and anticipate the behavior of systems subjected to intensified stress conditions, enabling the estimation of their durability under normal usage conditions. In this context, acceleration functions play a central role, as they describe how stress affects the time to failure. The main objective of this thesis is to investigate, study, and propose acceleration functions that enhance the models’ ability to capture complex relationships between stress and response. To this end, we adopt the context of multiple repairable systems under the assumption of minimal repair, where failures follow a Non-Homogeneous Poisson Process (NHPP) with a baseline intensity function governed by a Power Law Process. The modeling also incorporates unobserved heterogeneity through a frailty term, capturing random effects that influence system performance over time. Model development was carried out in several stages. Initially, an exponential accelerated failure time model with weighted Lindley frailty was proposed and compared to a model with gamma frailty. Next, the scope of acceleration functions was expanded to include the classical forms: Arrhenius, Eyring, and Inverse Power, in comparison with the Exponential form. This methodological extension resulted in eight models: four without frailty and four incorporating gamma frailty. Subsequently, two new acceleration functions were proposed, Exponentiated Exponential and Exponentiated Eyring, aiming to provide greater flexibility in modeling and broaden the potential for application in different accelerated stress scenarios, overcoming limitations of classical forms. Finally, two additional models were developed by combining these new functions with the inclusion of gamma frailty. Parameter estimation for all proposed models was conducted under a frequentist approach, through the construction of the likelihood function and the derivation of maximum likelihood estimators, along with their asymptotic confidence intervals obtained via numerical methods. In all cases, the performance of the estimators was evaluated through a simulation study that covered various scenarios and acceleration levels, and all models yielded satisfactory results. The applicability of these models was illustrated with practical examples involving multiple systems and varying stress levels, highlighting the relevance of these acceleration functions for reliability analysis in accelerated life testing.
id SCAR_10a1114bb0292e5b078b2fc094c65f1a
oai_identifier_str oai:repositorio.ufscar.br:20.500.14289/22936
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str
spelling Pereira, Edilenia QueirozAlberto Gonzatto Junior, Oilsonhttp://lattes.cnpq.br/7365405141909374http://lattes.cnpq.br/5581116134666021https://orcid.org/0000-0001-5806-2034https://orcid.org/0000-0002-5447-3044https://orcid.org/0000-0001-7815-9554https://orcid.org/0000-0001-6312-6098https://orcid.org/0000-0001-5912-5754https://orcid.org/0000-0001-5555-5343Louzada Neto, FranciscoHenrique Ferreira da Silva, PauloHanna Martins Morita , LiaLívio da Cunha Lopes , Titohttp://lattes.cnpq.br/0994050156415890http://lattes.cnpq.br/8538524597034643http://lattes.cnpq.br/8952048121396398http://lattes.cnpq.br/41724671054817542025-10-21T18:03:13Z2025-09-25PEREIRA, Edilenia Queiroz. Modelagem de tempo de falha acelerado para sistemas reparáveis considerando fragilidade e diferentes funções de aceleração. 2025. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2025. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/22936.https://hdl.handle.net/20.500.14289/22936Reliability analysis in accelerated life testing aims to understand and anticipate the behavior of systems subjected to intensified stress conditions, enabling the estimation of their durability under normal usage conditions. In this context, acceleration functions play a central role, as they describe how stress affects the time to failure. The main objective of this thesis is to investigate, study, and propose acceleration functions that enhance the models’ ability to capture complex relationships between stress and response. To this end, we adopt the context of multiple repairable systems under the assumption of minimal repair, where failures follow a Non-Homogeneous Poisson Process (NHPP) with a baseline intensity function governed by a Power Law Process. The modeling also incorporates unobserved heterogeneity through a frailty term, capturing random effects that influence system performance over time. Model development was carried out in several stages. Initially, an exponential accelerated failure time model with weighted Lindley frailty was proposed and compared to a model with gamma frailty. Next, the scope of acceleration functions was expanded to include the classical forms: Arrhenius, Eyring, and Inverse Power, in comparison with the Exponential form. This methodological extension resulted in eight models: four without frailty and four incorporating gamma frailty. Subsequently, two new acceleration functions were proposed, Exponentiated Exponential and Exponentiated Eyring, aiming to provide greater flexibility in modeling and broaden the potential for application in different accelerated stress scenarios, overcoming limitations of classical forms. Finally, two additional models were developed by combining these new functions with the inclusion of gamma frailty. Parameter estimation for all proposed models was conducted under a frequentist approach, through the construction of the likelihood function and the derivation of maximum likelihood estimators, along with their asymptotic confidence intervals obtained via numerical methods. In all cases, the performance of the estimators was evaluated through a simulation study that covered various scenarios and acceleration levels, and all models yielded satisfactory results. The applicability of these models was illustrated with practical examples involving multiple systems and varying stress levels, highlighting the relevance of these acceleration functions for reliability analysis in accelerated life testing.A análise de confiabilidade em testes acelerados busca compreender e antecipar o comportamento de sistemas submetidos a condições de estresse intensificado, permitindo estimar sua durabilidade em condições normais de uso. Nesse contexto, as funções de aceleração desempenham um papel central, pois descrevem como o estresse afeta o tempo até a falha. O principal objetivo desta tese é investigar, estudar e propor funções de aceleração que ampliem a capacidade dos modelos em capturar relações complexas entre estresse e resposta. Para isso, adota-se o contexto de múltiplos sistemas reparáveis sob a suposição de reparo mínimo, cujas falhas seguem um Processo de Poisson Não Homogêneo com função de intensidade de base regida pelo Processo de Lei de Potência. A modelagem também incorpora a variabilidade não observada por meio da fragilidade, capturando efeitos aleatórios que afetam o desempenho dos sistemas ao longo do tempo. A construção dos modelos foi realizada em diferentes etapas. Inicialmente, propôs-se o modelo de tempo de falha acelerado exponencial com fragilidade Lindley ponderada, em comparação ao modelo com fragilidade gama. Na sequência, ampliou-se o escopo das funções de aceleração para incluir as formas clássicas de Arrhenius, de Eyring e de Potência Inversa em comparação à Exponencial, resultando em oito modelos: quatro sem a inclusão de fragilidade e quatro com a incorporação de fragilidade gama. Posteriormente, foram propostas duas novas funções de aceleração, Exponencial Exponenciada e Eyring Exponenciada, com o objetivo de proporcionar maior flexibilidade à modelagem e ampliar seu potencial de aplicação em diferentes cenários de estresse acelerado, superando limitações das formas clássicas. Por fim, foram desenvolvidos dois modelos adicionais combinando essas novas funções com a inclusão de fragilidade gama. A estimação dos parâmetros, para todos os modelos propostos, foi realizada sob a abordagem frequentista, por meio da construção da função de verossimilhança e da obtenção dos estimadores de máxima verossimilhança, juntamente com seus intervalos de confiança assintóticos, determinados por métodos numéricos. Em todos os casos, o desempenho dos estimadores foi avaliados por meio de um estudo de simulação abrangendo diferentes cenários e níveis de aceleração e todos os modelos apresentaram resultados satisfatórios. A aplicabilidade desses modelos foi ilustrada com exemplos práticos envolvendo múltiplos sistemas e diferentes níveis de estresse, evidenciando a relevância dessas funções de aceleração para a análise de confiabilidade em testes acelerados.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)88887.890270/2023-00porUniversidade Federal de São CarlosCâmpus São CarlosPrograma Interinstitucional de Pós-Graduação em Estatística - PIPGEsUFSCarhttps://onlinelibrary.wiley.com/doi/abs/10.1002/asmb.2864Attribution 3.0 Brazilhttp://creativecommons.org/licenses/by/3.0/br/info:eu-repo/semantics/openAccessFragilidadeFunções de aceleraçãoModelo de regressãoProcesso de Lei de PotênciaSistemas reparáveisTestes aceleradosAcceleration functionsAccelerated testingFrailtyPower Law ProcessRegression modelRepairable systemsCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA18. Igualdade Étnico-Racial para o Desenvolvimento SustentávelModelagem de tempo de falha acelerado para sistemas reparáveis considerando fragilidade e diferentes funções de aceleraçãoAccelerated failure time modeling for repairable systems considering frailty and acceleration functionsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINAL1_TESE_Edilenia_Queiroz_2025.pdf1_TESE_Edilenia_Queiroz_2025.pdfapplication/pdf4031539https://repositorio.ufscar.br/bitstreams/4a8f774b-33c4-4943-9bf3-9295eff1e085/download974e5c30b9a3d5de205fc0226c037485MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81026https://repositorio.ufscar.br/bitstreams/bc799d34-30db-4931-b413-15ebc4662b56/download8b1d7be50365a944321ad7a1789f6ebfMD52falseAnonymousREADTEXT1_TESE_Edilenia_Queiroz_2025.pdf.txt1_TESE_Edilenia_Queiroz_2025.pdf.txtExtracted texttext/plain103566https://repositorio.ufscar.br/bitstreams/410c346e-56b5-4cde-8872-8d88e9ba589b/download727f1c18c10ca6110a9054bf1170b887MD53falseAnonymousREADTHUMBNAIL1_TESE_Edilenia_Queiroz_2025.pdf.jpg1_TESE_Edilenia_Queiroz_2025.pdf.jpgGenerated Thumbnailimage/jpeg6500https://repositorio.ufscar.br/bitstreams/7651b4e2-aae5-41cc-b7f1-35fdeb1b124e/downloada4d1308a4f9f66ea05f483f8b6d97123MD54falseAnonymousREAD20.500.14289/229362025-10-22T03:01:32.711065Zhttp://creativecommons.org/licenses/by/3.0/br/Attribution 3.0 Brazilopen.accessoai:repositorio.ufscar.br:20.500.14289/22936https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-10-22T03:01:32Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Modelagem de tempo de falha acelerado para sistemas reparáveis considerando fragilidade e diferentes funções de aceleração
dc.title.alternative.eng.fl_str_mv Accelerated failure time modeling for repairable systems considering frailty and acceleration functions
title Modelagem de tempo de falha acelerado para sistemas reparáveis considerando fragilidade e diferentes funções de aceleração
spellingShingle Modelagem de tempo de falha acelerado para sistemas reparáveis considerando fragilidade e diferentes funções de aceleração
Pereira, Edilenia Queiroz
Fragilidade
Funções de aceleração
Modelo de regressão
Processo de Lei de Potência
Sistemas reparáveis
Testes acelerados
Acceleration functions
Accelerated testing
Frailty
Power Law Process
Regression model
Repairable systems
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
18. Igualdade Étnico-Racial para o Desenvolvimento Sustentável
title_short Modelagem de tempo de falha acelerado para sistemas reparáveis considerando fragilidade e diferentes funções de aceleração
title_full Modelagem de tempo de falha acelerado para sistemas reparáveis considerando fragilidade e diferentes funções de aceleração
title_fullStr Modelagem de tempo de falha acelerado para sistemas reparáveis considerando fragilidade e diferentes funções de aceleração
title_full_unstemmed Modelagem de tempo de falha acelerado para sistemas reparáveis considerando fragilidade e diferentes funções de aceleração
title_sort Modelagem de tempo de falha acelerado para sistemas reparáveis considerando fragilidade e diferentes funções de aceleração
author Pereira, Edilenia Queiroz
author_facet Pereira, Edilenia Queiroz
author_role author
dc.contributor.authorlattes.none.fl_str_mv http://lattes.cnpq.br/5581116134666021
dc.contributor.authororcid.none.fl_str_mv https://orcid.org/0000-0001-5806-2034
dc.contributor.advisor1orcid.none.fl_str_mv https://orcid.org/0000-0002-5447-3044
dc.contributor.refereeorcid.none.fl_str_mv https://orcid.org/0000-0001-7815-9554
https://orcid.org/0000-0001-6312-6098
https://orcid.org/0000-0001-5912-5754
https://orcid.org/0000-0001-5555-5343
dc.contributor.referee.none.fl_str_mv Louzada Neto, Francisco
Henrique Ferreira da Silva, Paulo
Hanna Martins Morita , Lia
Lívio da Cunha Lopes , Tito
dc.contributor.refereeLattes.none.fl_str_mv http://lattes.cnpq.br/0994050156415890
http://lattes.cnpq.br/8538524597034643
http://lattes.cnpq.br/8952048121396398
http://lattes.cnpq.br/4172467105481754
dc.contributor.author.fl_str_mv Pereira, Edilenia Queiroz
dc.contributor.advisor1.fl_str_mv Alberto Gonzatto Junior, Oilson
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/7365405141909374
contributor_str_mv Alberto Gonzatto Junior, Oilson
dc.subject.por.fl_str_mv Fragilidade
Funções de aceleração
Modelo de regressão
Processo de Lei de Potência
Sistemas reparáveis
Testes acelerados
topic Fragilidade
Funções de aceleração
Modelo de regressão
Processo de Lei de Potência
Sistemas reparáveis
Testes acelerados
Acceleration functions
Accelerated testing
Frailty
Power Law Process
Regression model
Repairable systems
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
18. Igualdade Étnico-Racial para o Desenvolvimento Sustentável
dc.subject.eng.fl_str_mv Acceleration functions
Accelerated testing
Frailty
Power Law Process
Regression model
Repairable systems
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
dc.subject.ods.none.fl_str_mv 18. Igualdade Étnico-Racial para o Desenvolvimento Sustentável
description Reliability analysis in accelerated life testing aims to understand and anticipate the behavior of systems subjected to intensified stress conditions, enabling the estimation of their durability under normal usage conditions. In this context, acceleration functions play a central role, as they describe how stress affects the time to failure. The main objective of this thesis is to investigate, study, and propose acceleration functions that enhance the models’ ability to capture complex relationships between stress and response. To this end, we adopt the context of multiple repairable systems under the assumption of minimal repair, where failures follow a Non-Homogeneous Poisson Process (NHPP) with a baseline intensity function governed by a Power Law Process. The modeling also incorporates unobserved heterogeneity through a frailty term, capturing random effects that influence system performance over time. Model development was carried out in several stages. Initially, an exponential accelerated failure time model with weighted Lindley frailty was proposed and compared to a model with gamma frailty. Next, the scope of acceleration functions was expanded to include the classical forms: Arrhenius, Eyring, and Inverse Power, in comparison with the Exponential form. This methodological extension resulted in eight models: four without frailty and four incorporating gamma frailty. Subsequently, two new acceleration functions were proposed, Exponentiated Exponential and Exponentiated Eyring, aiming to provide greater flexibility in modeling and broaden the potential for application in different accelerated stress scenarios, overcoming limitations of classical forms. Finally, two additional models were developed by combining these new functions with the inclusion of gamma frailty. Parameter estimation for all proposed models was conducted under a frequentist approach, through the construction of the likelihood function and the derivation of maximum likelihood estimators, along with their asymptotic confidence intervals obtained via numerical methods. In all cases, the performance of the estimators was evaluated through a simulation study that covered various scenarios and acceleration levels, and all models yielded satisfactory results. The applicability of these models was illustrated with practical examples involving multiple systems and varying stress levels, highlighting the relevance of these acceleration functions for reliability analysis in accelerated life testing.
publishDate 2025
dc.date.accessioned.fl_str_mv 2025-10-21T18:03:13Z
dc.date.issued.fl_str_mv 2025-09-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv PEREIRA, Edilenia Queiroz. Modelagem de tempo de falha acelerado para sistemas reparáveis considerando fragilidade e diferentes funções de aceleração. 2025. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2025. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/22936.
dc.identifier.uri.fl_str_mv https://hdl.handle.net/20.500.14289/22936
identifier_str_mv PEREIRA, Edilenia Queiroz. Modelagem de tempo de falha acelerado para sistemas reparáveis considerando fragilidade e diferentes funções de aceleração. 2025. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2025. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/22936.
url https://hdl.handle.net/20.500.14289/22936
dc.language.iso.fl_str_mv por
language por
dc.relation.uri.none.fl_str_mv https://onlinelibrary.wiley.com/doi/abs/10.1002/asmb.2864
dc.rights.driver.fl_str_mv Attribution 3.0 Brazil
http://creativecommons.org/licenses/by/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution 3.0 Brazil
http://creativecommons.org/licenses/by/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstreams/4a8f774b-33c4-4943-9bf3-9295eff1e085/download
https://repositorio.ufscar.br/bitstreams/bc799d34-30db-4931-b413-15ebc4662b56/download
https://repositorio.ufscar.br/bitstreams/410c346e-56b5-4cde-8872-8d88e9ba589b/download
https://repositorio.ufscar.br/bitstreams/7651b4e2-aae5-41cc-b7f1-35fdeb1b124e/download
bitstream.checksum.fl_str_mv 974e5c30b9a3d5de205fc0226c037485
8b1d7be50365a944321ad7a1789f6ebf
727f1c18c10ca6110a9054bf1170b887
a4d1308a4f9f66ea05f483f8b6d97123
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv repositorio.sibi@ufscar.br
_version_ 1851688781110837248