On the existence of free actions of the groups Z_2, S^1 and S^3 on some finitistic spaces and cohomology of orbit spaces
| Ano de defesa: | 2021 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de São Carlos
Câmpus São Carlos |
| Programa de Pós-Graduação: |
Programa de Pós-Graduação em Matemática - PPGM
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://repositorio.ufscar.br/handle/20.500.14289/15401 |
Resumo: | Let G be a compact Lie group and X be a finitistic space. If G acts continuously on X, we can construct the fibration X \hookrightarrow X_{G} \arrow & B_{G}, (1) called Borel fibration, where G\hookrightarrow E_{G}\to B_{G} denotes the universal G-bundle and X_{G} is the orbit space (E_{G}\times X)/G, also known as the Borel space. When the action on G on X is free, there is a homotopy equivalence between the orbit space X/G and the space X_{G}. Therefore, we can use the Leray-Serre spectral sequence {E_{r}^{\ast,\ast},d_{r}}, associated to the fibration (1), which converges to the cohomology of the total space X_{G}, to get the cohomology ring of the orbit space X/G. In this thesis, we use these tools to investigate the existence of free actions of the compact Lie groups Z_2, S^1 and S^3 on some finitistic spaces. Precisely, we study the existence of free action on finitistic spaces with mod 2 cohomology of a Dold manifold P(m,n), a Wall manifold Q(m,n), a Milnor manifold H(m,n), a product of spheres, the (real, complex or quaternionic) projective spaces and spaces of type (a,b). When the space X admit such such structure, we compute the mod 2 cohomology of the respective orbit space X/G. |
| id |
SCAR_1df2c4975e69bc11ec4426d0cd207bf8 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufscar.br:20.500.14289/15401 |
| network_acronym_str |
SCAR |
| network_name_str |
Repositório Institucional da UFSCAR |
| repository_id_str |
|
| spelling |
Paiva, Thales Fernando VilamaiorSantos, Edivaldo Lopes doshttp://lattes.cnpq.br/2167472456497730http://lattes.cnpq.br/3657790999194912870e7cdd-0a48-46f3-a739-02507fa2d53f2021-12-21T21:33:14Z2021-12-21T21:33:14Z2021-12-16PAIVA, Thales Fernando Vilamaior. On the existence of free actions of the groups Z_2, S^1 and S^3 on some finitistic spaces and cohomology of orbit spaces. 2021. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/15401.https://repositorio.ufscar.br/handle/20.500.14289/15401Let G be a compact Lie group and X be a finitistic space. If G acts continuously on X, we can construct the fibration X \hookrightarrow X_{G} \arrow & B_{G}, (1) called Borel fibration, where G\hookrightarrow E_{G}\to B_{G} denotes the universal G-bundle and X_{G} is the orbit space (E_{G}\times X)/G, also known as the Borel space. When the action on G on X is free, there is a homotopy equivalence between the orbit space X/G and the space X_{G}. Therefore, we can use the Leray-Serre spectral sequence {E_{r}^{\ast,\ast},d_{r}}, associated to the fibration (1), which converges to the cohomology of the total space X_{G}, to get the cohomology ring of the orbit space X/G. In this thesis, we use these tools to investigate the existence of free actions of the compact Lie groups Z_2, S^1 and S^3 on some finitistic spaces. Precisely, we study the existence of free action on finitistic spaces with mod 2 cohomology of a Dold manifold P(m,n), a Wall manifold Q(m,n), a Milnor manifold H(m,n), a product of spheres, the (real, complex or quaternionic) projective spaces and spaces of type (a,b). When the space X admit such such structure, we compute the mod 2 cohomology of the respective orbit space X/G.Sejam G um grupo de Lie compacto e X um espaço finitístico. Quando G atua de forma contínua em X podemos construir a fibração X \hookrightarrow X_{G} \to B_{G}, (1) chamada fibração de Borel, onde G\hookrightarrow E_{G}\to B_{G} denota o G-fibrado univeral e X_{G} é o espaço de órbitas (E_{G}\times X)/G, também chamado de espaço de Borel. Se a ação G em X é livre, então existe uma equivalência de homotopia entre o espaço de órbitas X/G e o espaço X_{G}. Portanto, podemos usar a sequência espectral de Leray-Serre {E_{r}^{\ast,\ast},d_{r}}, associada à fibração (1), que converge para a cohomologia do espaço total X_{G}, para obter o anel de cohomologia do espaço de órbitas X/G. Nessa tese, utilizamos estas ferramentas para investigar a existência de ações livres dos grupos de Lie compactos Z_2, S^1 e S^3 em alguns espaços finitísticos. Precisamente, estudamos a existência de ações livres em espaços finitísticos que possuem cohomologia mod 2 de uma variedade de Dold P(m,n), variedade de Wall Q(m,n), variedade de Milnor H(m,n), um produto de esferas, espaços projetivos (reais, complexos ou quaterniônicos) e espaços do tipo (a,b). Quando o espaço X em questão admite essa estrutura, computamos a cohomologia dos respectivos espaços de órbitas X/G.Não recebi financiamentoengUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Matemática - PPGMUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessAções livresEspaços de órbitasFibração de BorelSequência espectral de Leray-SerreCohomologiaFree actionsOrbit spacesBorel fibrationLeray-Serre spectral sequenceCohomologyCIENCIAS EXATAS E DA TERRA::MATEMATICAOn the existence of free actions of the groups Z_2, S^1 and S^3 on some finitistic spaces and cohomology of orbit spacesSobre a existência de ações livres dos grupos Z_2, S^1 e S^3 em alguns espaços finitísticos e cohomologia dos espaços de órbitasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis6006000664081b-ea22-4c17-9c24-32d4f6f08133reponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTESE-THALES-versaofinal.pdfTESE-THALES-versaofinal.pdfTexto completo da teseapplication/pdf793684https://repositorio.ufscar.br/bitstreams/23b85536-568d-4586-b9bb-568472a2cbdc/download3fa11c9a3cb43c2114584026a7f82483MD51trueAnonymousREADModelo-assinado-orientador.pdfModelo-assinado-orientador.pdfCarta comprovante assinadaapplication/pdf121749https://repositorio.ufscar.br/bitstreams/44690e2a-e6b3-4e7f-9358-a79ca77997eb/download0e948c38323676033cc7cb2379f1aab4MD52falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstreams/489b1703-5927-4ab0-aff4-183f492e82f1/downloade39d27027a6cc9cb039ad269a5db8e34MD53falseAnonymousREADTEXTTESE-THALES-versaofinal.pdf.txtTESE-THALES-versaofinal.pdf.txtExtracted texttext/plain147767https://repositorio.ufscar.br/bitstreams/e3461c1f-fd6e-4024-ba2a-03b243784d1b/downloadb879c7cd86f7df7b65641770c7284381MD58falseAnonymousREADModelo-assinado-orientador.pdf.txtModelo-assinado-orientador.pdf.txtExtracted texttext/plain1380https://repositorio.ufscar.br/bitstreams/c4cd9628-141f-4a5f-8b60-b5f0f6f4778b/downloaddc42524a990c873d794286e945246a05MD510falseTHUMBNAILTESE-THALES-versaofinal.pdf.jpgTESE-THALES-versaofinal.pdf.jpgIM Thumbnailimage/jpeg6193https://repositorio.ufscar.br/bitstreams/889f3869-3e31-4d13-a37d-bb81c8d6dcd3/downloada18a8127d9debd443da9ec7c6aa9062cMD59falseAnonymousREADModelo-assinado-orientador.pdf.jpgModelo-assinado-orientador.pdf.jpgIM Thumbnailimage/jpeg6391https://repositorio.ufscar.br/bitstreams/dfd1fac2-21dc-4a7e-90b0-94b4d86f687c/download67d52aae04d9fa625f485290ea5056b2MD511false20.500.14289/154012025-02-05 20:40:33.687http://creativecommons.org/licenses/by-nc-nd/3.0/br/Attribution-NonCommercial-NoDerivs 3.0 Brazilopen.accessoai:repositorio.ufscar.br:20.500.14289/15401https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T23:40:33Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
| dc.title.eng.fl_str_mv |
On the existence of free actions of the groups Z_2, S^1 and S^3 on some finitistic spaces and cohomology of orbit spaces |
| dc.title.alternative.por.fl_str_mv |
Sobre a existência de ações livres dos grupos Z_2, S^1 e S^3 em alguns espaços finitísticos e cohomologia dos espaços de órbitas |
| title |
On the existence of free actions of the groups Z_2, S^1 and S^3 on some finitistic spaces and cohomology of orbit spaces |
| spellingShingle |
On the existence of free actions of the groups Z_2, S^1 and S^3 on some finitistic spaces and cohomology of orbit spaces Paiva, Thales Fernando Vilamaior Ações livres Espaços de órbitas Fibração de Borel Sequência espectral de Leray-Serre Cohomologia Free actions Orbit spaces Borel fibration Leray-Serre spectral sequence Cohomology CIENCIAS EXATAS E DA TERRA::MATEMATICA |
| title_short |
On the existence of free actions of the groups Z_2, S^1 and S^3 on some finitistic spaces and cohomology of orbit spaces |
| title_full |
On the existence of free actions of the groups Z_2, S^1 and S^3 on some finitistic spaces and cohomology of orbit spaces |
| title_fullStr |
On the existence of free actions of the groups Z_2, S^1 and S^3 on some finitistic spaces and cohomology of orbit spaces |
| title_full_unstemmed |
On the existence of free actions of the groups Z_2, S^1 and S^3 on some finitistic spaces and cohomology of orbit spaces |
| title_sort |
On the existence of free actions of the groups Z_2, S^1 and S^3 on some finitistic spaces and cohomology of orbit spaces |
| author |
Paiva, Thales Fernando Vilamaior |
| author_facet |
Paiva, Thales Fernando Vilamaior |
| author_role |
author |
| dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/3657790999194912 |
| dc.contributor.author.fl_str_mv |
Paiva, Thales Fernando Vilamaior |
| dc.contributor.advisor1.fl_str_mv |
Santos, Edivaldo Lopes dos |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/2167472456497730 |
| dc.contributor.authorID.fl_str_mv |
870e7cdd-0a48-46f3-a739-02507fa2d53f |
| contributor_str_mv |
Santos, Edivaldo Lopes dos |
| dc.subject.por.fl_str_mv |
Ações livres Espaços de órbitas Fibração de Borel Sequência espectral de Leray-Serre Cohomologia |
| topic |
Ações livres Espaços de órbitas Fibração de Borel Sequência espectral de Leray-Serre Cohomologia Free actions Orbit spaces Borel fibration Leray-Serre spectral sequence Cohomology CIENCIAS EXATAS E DA TERRA::MATEMATICA |
| dc.subject.eng.fl_str_mv |
Free actions Orbit spaces Borel fibration Leray-Serre spectral sequence Cohomology |
| dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::MATEMATICA |
| description |
Let G be a compact Lie group and X be a finitistic space. If G acts continuously on X, we can construct the fibration X \hookrightarrow X_{G} \arrow & B_{G}, (1) called Borel fibration, where G\hookrightarrow E_{G}\to B_{G} denotes the universal G-bundle and X_{G} is the orbit space (E_{G}\times X)/G, also known as the Borel space. When the action on G on X is free, there is a homotopy equivalence between the orbit space X/G and the space X_{G}. Therefore, we can use the Leray-Serre spectral sequence {E_{r}^{\ast,\ast},d_{r}}, associated to the fibration (1), which converges to the cohomology of the total space X_{G}, to get the cohomology ring of the orbit space X/G. In this thesis, we use these tools to investigate the existence of free actions of the compact Lie groups Z_2, S^1 and S^3 on some finitistic spaces. Precisely, we study the existence of free action on finitistic spaces with mod 2 cohomology of a Dold manifold P(m,n), a Wall manifold Q(m,n), a Milnor manifold H(m,n), a product of spheres, the (real, complex or quaternionic) projective spaces and spaces of type (a,b). When the space X admit such such structure, we compute the mod 2 cohomology of the respective orbit space X/G. |
| publishDate |
2021 |
| dc.date.accessioned.fl_str_mv |
2021-12-21T21:33:14Z |
| dc.date.available.fl_str_mv |
2021-12-21T21:33:14Z |
| dc.date.issued.fl_str_mv |
2021-12-16 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
PAIVA, Thales Fernando Vilamaior. On the existence of free actions of the groups Z_2, S^1 and S^3 on some finitistic spaces and cohomology of orbit spaces. 2021. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/15401. |
| dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/20.500.14289/15401 |
| identifier_str_mv |
PAIVA, Thales Fernando Vilamaior. On the existence of free actions of the groups Z_2, S^1 and S^3 on some finitistic spaces and cohomology of orbit spaces. 2021. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/15401. |
| url |
https://repositorio.ufscar.br/handle/20.500.14289/15401 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.confidence.fl_str_mv |
600 600 |
| dc.relation.authority.fl_str_mv |
0664081b-ea22-4c17-9c24-32d4f6f08133 |
| dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Matemática - PPGM |
| dc.publisher.initials.fl_str_mv |
UFSCar |
| publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
| instname_str |
Universidade Federal de São Carlos (UFSCAR) |
| instacron_str |
UFSCAR |
| institution |
UFSCAR |
| reponame_str |
Repositório Institucional da UFSCAR |
| collection |
Repositório Institucional da UFSCAR |
| bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstreams/23b85536-568d-4586-b9bb-568472a2cbdc/download https://repositorio.ufscar.br/bitstreams/44690e2a-e6b3-4e7f-9358-a79ca77997eb/download https://repositorio.ufscar.br/bitstreams/489b1703-5927-4ab0-aff4-183f492e82f1/download https://repositorio.ufscar.br/bitstreams/e3461c1f-fd6e-4024-ba2a-03b243784d1b/download https://repositorio.ufscar.br/bitstreams/c4cd9628-141f-4a5f-8b60-b5f0f6f4778b/download https://repositorio.ufscar.br/bitstreams/889f3869-3e31-4d13-a37d-bb81c8d6dcd3/download https://repositorio.ufscar.br/bitstreams/dfd1fac2-21dc-4a7e-90b0-94b4d86f687c/download |
| bitstream.checksum.fl_str_mv |
3fa11c9a3cb43c2114584026a7f82483 0e948c38323676033cc7cb2379f1aab4 e39d27027a6cc9cb039ad269a5db8e34 b879c7cd86f7df7b65641770c7284381 dc42524a990c873d794286e945246a05 a18a8127d9debd443da9ec7c6aa9062c 67d52aae04d9fa625f485290ea5056b2 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
| repository.mail.fl_str_mv |
repositorio.sibi@ufscar.br |
| _version_ |
1851688944805085184 |