On the existence of free actions of the groups Z_2, S^1 and S^3 on some finitistic spaces and cohomology of orbit spaces

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Paiva, Thales Fernando Vilamaior
Orientador(a): Santos, Edivaldo Lopes dos lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Matemática - PPGM
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/15401
Resumo: Let G be a compact Lie group and X be a finitistic space. If G acts continuously on X, we can construct the fibration X \hookrightarrow X_{G} \arrow & B_{G}, (1) called Borel fibration, where G\hookrightarrow E_{G}\to B_{G} denotes the universal G-bundle and X_{G} is the orbit space (E_{G}\times X)/G, also known as the Borel space. When the action on G on X is free, there is a homotopy equivalence between the orbit space X/G and the space X_{G}. Therefore, we can use the Leray-Serre spectral sequence {E_{r}^{\ast,\ast},d_{r}}, associated to the fibration (1), which converges to the cohomology of the total space X_{G}, to get the cohomology ring of the orbit space X/G. In this thesis, we use these tools to investigate the existence of free actions of the compact Lie groups Z_2, S^1 and S^3 on some finitistic spaces. Precisely, we study the existence of free action on finitistic spaces with mod 2 cohomology of a Dold manifold P(m,n), a Wall manifold Q(m,n), a Milnor manifold H(m,n), a product of spheres, the (real, complex or quaternionic) projective spaces and spaces of type (a,b). When the space X admit such such structure, we compute the mod 2 cohomology of the respective orbit space X/G.
id SCAR_1df2c4975e69bc11ec4426d0cd207bf8
oai_identifier_str oai:repositorio.ufscar.br:20.500.14289/15401
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str
spelling Paiva, Thales Fernando VilamaiorSantos, Edivaldo Lopes doshttp://lattes.cnpq.br/2167472456497730http://lattes.cnpq.br/3657790999194912870e7cdd-0a48-46f3-a739-02507fa2d53f2021-12-21T21:33:14Z2021-12-21T21:33:14Z2021-12-16PAIVA, Thales Fernando Vilamaior. On the existence of free actions of the groups Z_2, S^1 and S^3 on some finitistic spaces and cohomology of orbit spaces. 2021. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/15401.https://repositorio.ufscar.br/handle/20.500.14289/15401Let G be a compact Lie group and X be a finitistic space. If G acts continuously on X, we can construct the fibration X \hookrightarrow X_{G} \arrow & B_{G}, (1) called Borel fibration, where G\hookrightarrow E_{G}\to B_{G} denotes the universal G-bundle and X_{G} is the orbit space (E_{G}\times X)/G, also known as the Borel space. When the action on G on X is free, there is a homotopy equivalence between the orbit space X/G and the space X_{G}. Therefore, we can use the Leray-Serre spectral sequence {E_{r}^{\ast,\ast},d_{r}}, associated to the fibration (1), which converges to the cohomology of the total space X_{G}, to get the cohomology ring of the orbit space X/G. In this thesis, we use these tools to investigate the existence of free actions of the compact Lie groups Z_2, S^1 and S^3 on some finitistic spaces. Precisely, we study the existence of free action on finitistic spaces with mod 2 cohomology of a Dold manifold P(m,n), a Wall manifold Q(m,n), a Milnor manifold H(m,n), a product of spheres, the (real, complex or quaternionic) projective spaces and spaces of type (a,b). When the space X admit such such structure, we compute the mod 2 cohomology of the respective orbit space X/G.Sejam G um grupo de Lie compacto e X um espaço finitístico. Quando G atua de forma contínua em X podemos construir a fibração X \hookrightarrow X_{G} \to B_{G}, (1) chamada fibração de Borel, onde G\hookrightarrow E_{G}\to B_{G} denota o G-fibrado univeral e X_{G} é o espaço de órbitas (E_{G}\times X)/G, também chamado de espaço de Borel. Se a ação G em X é livre, então existe uma equivalência de homotopia entre o espaço de órbitas X/G e o espaço X_{G}. Portanto, podemos usar a sequência espectral de Leray-Serre {E_{r}^{\ast,\ast},d_{r}}, associada à fibração (1), que converge para a cohomologia do espaço total X_{G}, para obter o anel de cohomologia do espaço de órbitas X/G. Nessa tese, utilizamos estas ferramentas para investigar a existência de ações livres dos grupos de Lie compactos Z_2, S^1 e S^3 em alguns espaços finitísticos. Precisamente, estudamos a existência de ações livres em espaços finitísticos que possuem cohomologia mod 2 de uma variedade de Dold P(m,n), variedade de Wall Q(m,n), variedade de Milnor H(m,n), um produto de esferas, espaços projetivos (reais, complexos ou quaterniônicos) e espaços do tipo (a,b). Quando o espaço X em questão admite essa estrutura, computamos a cohomologia dos respectivos espaços de órbitas X/G.Não recebi financiamentoengUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Matemática - PPGMUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessAções livresEspaços de órbitasFibração de BorelSequência espectral de Leray-SerreCohomologiaFree actionsOrbit spacesBorel fibrationLeray-Serre spectral sequenceCohomologyCIENCIAS EXATAS E DA TERRA::MATEMATICAOn the existence of free actions of the groups Z_2, S^1 and S^3 on some finitistic spaces and cohomology of orbit spacesSobre a existência de ações livres dos grupos Z_2, S^1 e S^3 em alguns espaços finitísticos e cohomologia dos espaços de órbitasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis6006000664081b-ea22-4c17-9c24-32d4f6f08133reponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTESE-THALES-versaofinal.pdfTESE-THALES-versaofinal.pdfTexto completo da teseapplication/pdf793684https://repositorio.ufscar.br/bitstreams/23b85536-568d-4586-b9bb-568472a2cbdc/download3fa11c9a3cb43c2114584026a7f82483MD51trueAnonymousREADModelo-assinado-orientador.pdfModelo-assinado-orientador.pdfCarta comprovante assinadaapplication/pdf121749https://repositorio.ufscar.br/bitstreams/44690e2a-e6b3-4e7f-9358-a79ca77997eb/download0e948c38323676033cc7cb2379f1aab4MD52falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstreams/489b1703-5927-4ab0-aff4-183f492e82f1/downloade39d27027a6cc9cb039ad269a5db8e34MD53falseAnonymousREADTEXTTESE-THALES-versaofinal.pdf.txtTESE-THALES-versaofinal.pdf.txtExtracted texttext/plain147767https://repositorio.ufscar.br/bitstreams/e3461c1f-fd6e-4024-ba2a-03b243784d1b/downloadb879c7cd86f7df7b65641770c7284381MD58falseAnonymousREADModelo-assinado-orientador.pdf.txtModelo-assinado-orientador.pdf.txtExtracted texttext/plain1380https://repositorio.ufscar.br/bitstreams/c4cd9628-141f-4a5f-8b60-b5f0f6f4778b/downloaddc42524a990c873d794286e945246a05MD510falseTHUMBNAILTESE-THALES-versaofinal.pdf.jpgTESE-THALES-versaofinal.pdf.jpgIM Thumbnailimage/jpeg6193https://repositorio.ufscar.br/bitstreams/889f3869-3e31-4d13-a37d-bb81c8d6dcd3/downloada18a8127d9debd443da9ec7c6aa9062cMD59falseAnonymousREADModelo-assinado-orientador.pdf.jpgModelo-assinado-orientador.pdf.jpgIM Thumbnailimage/jpeg6391https://repositorio.ufscar.br/bitstreams/dfd1fac2-21dc-4a7e-90b0-94b4d86f687c/download67d52aae04d9fa625f485290ea5056b2MD511false20.500.14289/154012025-02-05 20:40:33.687http://creativecommons.org/licenses/by-nc-nd/3.0/br/Attribution-NonCommercial-NoDerivs 3.0 Brazilopen.accessoai:repositorio.ufscar.br:20.500.14289/15401https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T23:40:33Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.eng.fl_str_mv On the existence of free actions of the groups Z_2, S^1 and S^3 on some finitistic spaces and cohomology of orbit spaces
dc.title.alternative.por.fl_str_mv Sobre a existência de ações livres dos grupos Z_2, S^1 e S^3 em alguns espaços finitísticos e cohomologia dos espaços de órbitas
title On the existence of free actions of the groups Z_2, S^1 and S^3 on some finitistic spaces and cohomology of orbit spaces
spellingShingle On the existence of free actions of the groups Z_2, S^1 and S^3 on some finitistic spaces and cohomology of orbit spaces
Paiva, Thales Fernando Vilamaior
Ações livres
Espaços de órbitas
Fibração de Borel
Sequência espectral de Leray-Serre
Cohomologia
Free actions
Orbit spaces
Borel fibration
Leray-Serre spectral sequence
Cohomology
CIENCIAS EXATAS E DA TERRA::MATEMATICA
title_short On the existence of free actions of the groups Z_2, S^1 and S^3 on some finitistic spaces and cohomology of orbit spaces
title_full On the existence of free actions of the groups Z_2, S^1 and S^3 on some finitistic spaces and cohomology of orbit spaces
title_fullStr On the existence of free actions of the groups Z_2, S^1 and S^3 on some finitistic spaces and cohomology of orbit spaces
title_full_unstemmed On the existence of free actions of the groups Z_2, S^1 and S^3 on some finitistic spaces and cohomology of orbit spaces
title_sort On the existence of free actions of the groups Z_2, S^1 and S^3 on some finitistic spaces and cohomology of orbit spaces
author Paiva, Thales Fernando Vilamaior
author_facet Paiva, Thales Fernando Vilamaior
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/3657790999194912
dc.contributor.author.fl_str_mv Paiva, Thales Fernando Vilamaior
dc.contributor.advisor1.fl_str_mv Santos, Edivaldo Lopes dos
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/2167472456497730
dc.contributor.authorID.fl_str_mv 870e7cdd-0a48-46f3-a739-02507fa2d53f
contributor_str_mv Santos, Edivaldo Lopes dos
dc.subject.por.fl_str_mv Ações livres
Espaços de órbitas
Fibração de Borel
Sequência espectral de Leray-Serre
Cohomologia
topic Ações livres
Espaços de órbitas
Fibração de Borel
Sequência espectral de Leray-Serre
Cohomologia
Free actions
Orbit spaces
Borel fibration
Leray-Serre spectral sequence
Cohomology
CIENCIAS EXATAS E DA TERRA::MATEMATICA
dc.subject.eng.fl_str_mv Free actions
Orbit spaces
Borel fibration
Leray-Serre spectral sequence
Cohomology
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::MATEMATICA
description Let G be a compact Lie group and X be a finitistic space. If G acts continuously on X, we can construct the fibration X \hookrightarrow X_{G} \arrow & B_{G}, (1) called Borel fibration, where G\hookrightarrow E_{G}\to B_{G} denotes the universal G-bundle and X_{G} is the orbit space (E_{G}\times X)/G, also known as the Borel space. When the action on G on X is free, there is a homotopy equivalence between the orbit space X/G and the space X_{G}. Therefore, we can use the Leray-Serre spectral sequence {E_{r}^{\ast,\ast},d_{r}}, associated to the fibration (1), which converges to the cohomology of the total space X_{G}, to get the cohomology ring of the orbit space X/G. In this thesis, we use these tools to investigate the existence of free actions of the compact Lie groups Z_2, S^1 and S^3 on some finitistic spaces. Precisely, we study the existence of free action on finitistic spaces with mod 2 cohomology of a Dold manifold P(m,n), a Wall manifold Q(m,n), a Milnor manifold H(m,n), a product of spheres, the (real, complex or quaternionic) projective spaces and spaces of type (a,b). When the space X admit such such structure, we compute the mod 2 cohomology of the respective orbit space X/G.
publishDate 2021
dc.date.accessioned.fl_str_mv 2021-12-21T21:33:14Z
dc.date.available.fl_str_mv 2021-12-21T21:33:14Z
dc.date.issued.fl_str_mv 2021-12-16
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv PAIVA, Thales Fernando Vilamaior. On the existence of free actions of the groups Z_2, S^1 and S^3 on some finitistic spaces and cohomology of orbit spaces. 2021. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/15401.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/20.500.14289/15401
identifier_str_mv PAIVA, Thales Fernando Vilamaior. On the existence of free actions of the groups Z_2, S^1 and S^3 on some finitistic spaces and cohomology of orbit spaces. 2021. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/15401.
url https://repositorio.ufscar.br/handle/20.500.14289/15401
dc.language.iso.fl_str_mv eng
language eng
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv 0664081b-ea22-4c17-9c24-32d4f6f08133
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Matemática - PPGM
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstreams/23b85536-568d-4586-b9bb-568472a2cbdc/download
https://repositorio.ufscar.br/bitstreams/44690e2a-e6b3-4e7f-9358-a79ca77997eb/download
https://repositorio.ufscar.br/bitstreams/489b1703-5927-4ab0-aff4-183f492e82f1/download
https://repositorio.ufscar.br/bitstreams/e3461c1f-fd6e-4024-ba2a-03b243784d1b/download
https://repositorio.ufscar.br/bitstreams/c4cd9628-141f-4a5f-8b60-b5f0f6f4778b/download
https://repositorio.ufscar.br/bitstreams/889f3869-3e31-4d13-a37d-bb81c8d6dcd3/download
https://repositorio.ufscar.br/bitstreams/dfd1fac2-21dc-4a7e-90b0-94b4d86f687c/download
bitstream.checksum.fl_str_mv 3fa11c9a3cb43c2114584026a7f82483
0e948c38323676033cc7cb2379f1aab4
e39d27027a6cc9cb039ad269a5db8e34
b879c7cd86f7df7b65641770c7284381
dc42524a990c873d794286e945246a05
a18a8127d9debd443da9ec7c6aa9062c
67d52aae04d9fa625f485290ea5056b2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv repositorio.sibi@ufscar.br
_version_ 1851688944805085184