Ações de Zr2 fixando RPj U CPk

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Lima, Amanda Ferreira de
Orientador(a): Pergher, Pedro Luiz Queiroz lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Matemática - PPGM
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/9449
Resumo: The classification up to equivariant cobordism of smooth involutios (M, T) having fixed set F is a classical problem in cobordism theory. This classification has been studied for several cases of F, of which we highlight the following: For F = RPj, the j-dimensional real projective space, the classification was established by P. E. Conner, E. E. Floyd and R. E. Stong in [6] and [26]. In [24], D. C. Royster studied this problem with F = RPj U RPk, for naturals numbers j and k, except when j and k are both even and greater than zero. R. Oliveira, P. L. Q. Pergher and A. Ramos established the classification for F = RPj U RPk where j = 2 and k is even in [17]. The general case where j and k are both even and greater than zero is still open. For F = CPj and F = HPj, where CPj and HPj are the corresponding complex and quaternionic projective spaces, the classification was established by P. L. Q. Pergher and A. Ramos in [21]. They also established the classification for F = CPj U CPk and F = HPj U HPk, except when j and k are both even and greater than zero, but they resolved this problem for the particular case j = 2* and k even. As in the real case, also for complex and quaternionic projective spaces, the general case where j and k are both even and greater than zero is still open. In this work we deal with the classification, up to equivariant cobordism, of the pairs (M, T) for which the fixed point set is F = RPj U CPk, including the “hard”case where j and k are both even and greater than zero. We also extend the classification for Z^-actions in the case that both dimensions are even.
id SCAR_30b5b53eb4b8892343e6f01d44c7283c
oai_identifier_str oai:repositorio.ufscar.br:20.500.14289/9449
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str
spelling Lima, Amanda Ferreira dePergher, Pedro Luiz Queirozhttp://lattes.cnpq.br/3328545959112090http://lattes.cnpq.br/31513664909939376f105b3d-f4fd-4529-afc7-5adc11590de92018-02-20T12:41:02Z2018-02-20T12:41:02Z2017-03-07LIMA, Amanda Ferreira de. Ações de Zr2 fixando RPj U CPk. 2017. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/9449.https://repositorio.ufscar.br/handle/20.500.14289/9449The classification up to equivariant cobordism of smooth involutios (M, T) having fixed set F is a classical problem in cobordism theory. This classification has been studied for several cases of F, of which we highlight the following: For F = RPj, the j-dimensional real projective space, the classification was established by P. E. Conner, E. E. Floyd and R. E. Stong in [6] and [26]. In [24], D. C. Royster studied this problem with F = RPj U RPk, for naturals numbers j and k, except when j and k are both even and greater than zero. R. Oliveira, P. L. Q. Pergher and A. Ramos established the classification for F = RPj U RPk where j = 2 and k is even in [17]. The general case where j and k are both even and greater than zero is still open. For F = CPj and F = HPj, where CPj and HPj are the corresponding complex and quaternionic projective spaces, the classification was established by P. L. Q. Pergher and A. Ramos in [21]. They also established the classification for F = CPj U CPk and F = HPj U HPk, except when j and k are both even and greater than zero, but they resolved this problem for the particular case j = 2* and k even. As in the real case, also for complex and quaternionic projective spaces, the general case where j and k are both even and greater than zero is still open. In this work we deal with the classification, up to equivariant cobordism, of the pairs (M, T) for which the fixed point set is F = RPj U CPk, including the “hard”case where j and k are both even and greater than zero. We also extend the classification for Z^-actions in the case that both dimensions are even.A classificação, a menos de cobordismo equivariante, das involuções suaves (M, T) que possuem um determinado conjunto de pontos fixos F, e um problema ciassico na teoria de cobordismo. Esta classificaçao vem sendo estudada para varios casos de F, dos quais destacamos: Em [6] e [26], P. E. Conner, E. E. Floyd e R. E. Stong realizaram a classificacão para o caso em que F e um espaço projetivo real RPn, para todo natural n. D.C. Royster estabeleceu em [24] a classificacao de involucoes fixando uma uniao RPm U RPn, para naturais m, n, com exceçao dos casos em que m e n são ambos pares e positivos. Em [17], R. Oliveira, P. L. Q. Pergher e A. Ramos classificaram as involuçoes que fixam esta uniao de dois espacos projetivos reais para o caso em que m = 2 e n e par. O caso geral em que m e n sao ambos pares e positivos permanece em aberto. Em [21], P. L. Q. Pergher e A. Ramos generalizaram os trabalhos de P. E. Conner, E. E. Floyd, R. E. Stong e D. C. Royster, realizando a classificacão das involucoes que fixam um espaço projetivo complexo CPn ou um espaço projetivo quaterniônico HPn, para todo natural n, e estudando o problema quando F e uma uniao de dois espacos projetivos complexos CPm U CPn ou de dois espacos projetivos quaterniônicos HPm U HPn, com exceção dos casos em que m e n sao ambos pares positivos. Neste caso específico, P. L. Q. Pergher e A. Ramos estabeleceram esta classificacao para o caso em que m e uma potencia de 2 e n e par. Com excecao deste caso particular, o caso geral em que m e n sao ambos pares e positivos permanece em aberto. O objetivo deste trabalho e obter a classificacao em pauta quando o conjunto de pontos fixos e a uniao de um espaco projetivo real com um espaco projetivo complexo, RPj U CPk, para quaisquer j e k, incluindo portanto o caso ate entao em aberto com j e k pares quaisquer. Alem disso, estendemos a classificaçao para Z^-açães no caso em que ambas as dimensães sao pares e positivas.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Matemática - PPGMUFSCarClassificaçãoCobordismo equivarianteMatemáticaCIENCIAS EXATAS E DA TERRA::MATEMATICAAções de Zr2 fixando RPj U CPkinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnline600600f365652a-a273-4c63-93e5-cb9755dde3d2info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARLICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstreams/d4944ed2-424c-4dfc-9f7d-dd25012ad1cf/downloadae0398b6f8b235e40ad82cba6c50031dMD52falseAnonymousREADORIGINALTeseAFL.pdfTeseAFL.pdfapplication/pdf1033495https://repositorio.ufscar.br/bitstreams/e9dafe1f-343b-4112-83c7-19f14a31f384/downloadc38b63f3923db5467cf5388d61ee9bc7MD51trueAnonymousREADTEXTTeseAFL.pdf.txtTeseAFL.pdf.txtExtracted texttext/plain196503https://repositorio.ufscar.br/bitstreams/0b0639d2-669e-454b-9cb7-06c845c4cd67/downloadd3a078fc42e81cbeef97f5bec0722808MD55falseAnonymousREADTHUMBNAILTeseAFL.pdf.jpgTeseAFL.pdf.jpgIM Thumbnailimage/jpeg4180https://repositorio.ufscar.br/bitstreams/ef9f92c7-2e45-4208-bc1a-4083692e4940/download9df2914314d20b4692c04db29ed34540MD56falseAnonymousREAD20.500.14289/94492025-02-05 19:04:19.307Acesso abertoopen.accessoai:repositorio.ufscar.br:20.500.14289/9449https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T22:04:19Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==
dc.title.por.fl_str_mv Ações de Zr2 fixando RPj U CPk
title Ações de Zr2 fixando RPj U CPk
spellingShingle Ações de Zr2 fixando RPj U CPk
Lima, Amanda Ferreira de
Classificação
Cobordismo equivariante
Matemática
CIENCIAS EXATAS E DA TERRA::MATEMATICA
title_short Ações de Zr2 fixando RPj U CPk
title_full Ações de Zr2 fixando RPj U CPk
title_fullStr Ações de Zr2 fixando RPj U CPk
title_full_unstemmed Ações de Zr2 fixando RPj U CPk
title_sort Ações de Zr2 fixando RPj U CPk
author Lima, Amanda Ferreira de
author_facet Lima, Amanda Ferreira de
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/3151366490993937
dc.contributor.author.fl_str_mv Lima, Amanda Ferreira de
dc.contributor.advisor1.fl_str_mv Pergher, Pedro Luiz Queiroz
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/3328545959112090
dc.contributor.authorID.fl_str_mv 6f105b3d-f4fd-4529-afc7-5adc11590de9
contributor_str_mv Pergher, Pedro Luiz Queiroz
dc.subject.por.fl_str_mv Classificação
Cobordismo equivariante
Matemática
topic Classificação
Cobordismo equivariante
Matemática
CIENCIAS EXATAS E DA TERRA::MATEMATICA
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::MATEMATICA
description The classification up to equivariant cobordism of smooth involutios (M, T) having fixed set F is a classical problem in cobordism theory. This classification has been studied for several cases of F, of which we highlight the following: For F = RPj, the j-dimensional real projective space, the classification was established by P. E. Conner, E. E. Floyd and R. E. Stong in [6] and [26]. In [24], D. C. Royster studied this problem with F = RPj U RPk, for naturals numbers j and k, except when j and k are both even and greater than zero. R. Oliveira, P. L. Q. Pergher and A. Ramos established the classification for F = RPj U RPk where j = 2 and k is even in [17]. The general case where j and k are both even and greater than zero is still open. For F = CPj and F = HPj, where CPj and HPj are the corresponding complex and quaternionic projective spaces, the classification was established by P. L. Q. Pergher and A. Ramos in [21]. They also established the classification for F = CPj U CPk and F = HPj U HPk, except when j and k are both even and greater than zero, but they resolved this problem for the particular case j = 2* and k even. As in the real case, also for complex and quaternionic projective spaces, the general case where j and k are both even and greater than zero is still open. In this work we deal with the classification, up to equivariant cobordism, of the pairs (M, T) for which the fixed point set is F = RPj U CPk, including the “hard”case where j and k are both even and greater than zero. We also extend the classification for Z^-actions in the case that both dimensions are even.
publishDate 2017
dc.date.issued.fl_str_mv 2017-03-07
dc.date.accessioned.fl_str_mv 2018-02-20T12:41:02Z
dc.date.available.fl_str_mv 2018-02-20T12:41:02Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv LIMA, Amanda Ferreira de. Ações de Zr2 fixando RPj U CPk. 2017. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/9449.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/20.500.14289/9449
identifier_str_mv LIMA, Amanda Ferreira de. Ações de Zr2 fixando RPj U CPk. 2017. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/9449.
url https://repositorio.ufscar.br/handle/20.500.14289/9449
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv f365652a-a273-4c63-93e5-cb9755dde3d2
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Matemática - PPGM
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstreams/d4944ed2-424c-4dfc-9f7d-dd25012ad1cf/download
https://repositorio.ufscar.br/bitstreams/e9dafe1f-343b-4112-83c7-19f14a31f384/download
https://repositorio.ufscar.br/bitstreams/0b0639d2-669e-454b-9cb7-06c845c4cd67/download
https://repositorio.ufscar.br/bitstreams/ef9f92c7-2e45-4208-bc1a-4083692e4940/download
bitstream.checksum.fl_str_mv ae0398b6f8b235e40ad82cba6c50031d
c38b63f3923db5467cf5388d61ee9bc7
d3a078fc42e81cbeef97f5bec0722808
9df2914314d20b4692c04db29ed34540
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv repositorio.sibi@ufscar.br
_version_ 1851688905098657792