Ações de Zr2 fixando RPj U CPk
| Ano de defesa: | 2017 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de São Carlos
Câmpus São Carlos |
| Programa de Pós-Graduação: |
Programa de Pós-Graduação em Matemática - PPGM
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://repositorio.ufscar.br/handle/20.500.14289/9449 |
Resumo: | The classification up to equivariant cobordism of smooth involutios (M, T) having fixed set F is a classical problem in cobordism theory. This classification has been studied for several cases of F, of which we highlight the following: For F = RPj, the j-dimensional real projective space, the classification was established by P. E. Conner, E. E. Floyd and R. E. Stong in [6] and [26]. In [24], D. C. Royster studied this problem with F = RPj U RPk, for naturals numbers j and k, except when j and k are both even and greater than zero. R. Oliveira, P. L. Q. Pergher and A. Ramos established the classification for F = RPj U RPk where j = 2 and k is even in [17]. The general case where j and k are both even and greater than zero is still open. For F = CPj and F = HPj, where CPj and HPj are the corresponding complex and quaternionic projective spaces, the classification was established by P. L. Q. Pergher and A. Ramos in [21]. They also established the classification for F = CPj U CPk and F = HPj U HPk, except when j and k are both even and greater than zero, but they resolved this problem for the particular case j = 2* and k even. As in the real case, also for complex and quaternionic projective spaces, the general case where j and k are both even and greater than zero is still open. In this work we deal with the classification, up to equivariant cobordism, of the pairs (M, T) for which the fixed point set is F = RPj U CPk, including the “hard”case where j and k are both even and greater than zero. We also extend the classification for Z^-actions in the case that both dimensions are even. |
| id |
SCAR_30b5b53eb4b8892343e6f01d44c7283c |
|---|---|
| oai_identifier_str |
oai:repositorio.ufscar.br:20.500.14289/9449 |
| network_acronym_str |
SCAR |
| network_name_str |
Repositório Institucional da UFSCAR |
| repository_id_str |
|
| spelling |
Lima, Amanda Ferreira dePergher, Pedro Luiz Queirozhttp://lattes.cnpq.br/3328545959112090http://lattes.cnpq.br/31513664909939376f105b3d-f4fd-4529-afc7-5adc11590de92018-02-20T12:41:02Z2018-02-20T12:41:02Z2017-03-07LIMA, Amanda Ferreira de. Ações de Zr2 fixando RPj U CPk. 2017. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/9449.https://repositorio.ufscar.br/handle/20.500.14289/9449The classification up to equivariant cobordism of smooth involutios (M, T) having fixed set F is a classical problem in cobordism theory. This classification has been studied for several cases of F, of which we highlight the following: For F = RPj, the j-dimensional real projective space, the classification was established by P. E. Conner, E. E. Floyd and R. E. Stong in [6] and [26]. In [24], D. C. Royster studied this problem with F = RPj U RPk, for naturals numbers j and k, except when j and k are both even and greater than zero. R. Oliveira, P. L. Q. Pergher and A. Ramos established the classification for F = RPj U RPk where j = 2 and k is even in [17]. The general case where j and k are both even and greater than zero is still open. For F = CPj and F = HPj, where CPj and HPj are the corresponding complex and quaternionic projective spaces, the classification was established by P. L. Q. Pergher and A. Ramos in [21]. They also established the classification for F = CPj U CPk and F = HPj U HPk, except when j and k are both even and greater than zero, but they resolved this problem for the particular case j = 2* and k even. As in the real case, also for complex and quaternionic projective spaces, the general case where j and k are both even and greater than zero is still open. In this work we deal with the classification, up to equivariant cobordism, of the pairs (M, T) for which the fixed point set is F = RPj U CPk, including the “hard”case where j and k are both even and greater than zero. We also extend the classification for Z^-actions in the case that both dimensions are even.A classificação, a menos de cobordismo equivariante, das involuções suaves (M, T) que possuem um determinado conjunto de pontos fixos F, e um problema ciassico na teoria de cobordismo. Esta classificaçao vem sendo estudada para varios casos de F, dos quais destacamos: Em [6] e [26], P. E. Conner, E. E. Floyd e R. E. Stong realizaram a classificacão para o caso em que F e um espaço projetivo real RPn, para todo natural n. D.C. Royster estabeleceu em [24] a classificacao de involucoes fixando uma uniao RPm U RPn, para naturais m, n, com exceçao dos casos em que m e n são ambos pares e positivos. Em [17], R. Oliveira, P. L. Q. Pergher e A. Ramos classificaram as involuçoes que fixam esta uniao de dois espacos projetivos reais para o caso em que m = 2 e n e par. O caso geral em que m e n sao ambos pares e positivos permanece em aberto. Em [21], P. L. Q. Pergher e A. Ramos generalizaram os trabalhos de P. E. Conner, E. E. Floyd, R. E. Stong e D. C. Royster, realizando a classificacão das involucoes que fixam um espaço projetivo complexo CPn ou um espaço projetivo quaterniônico HPn, para todo natural n, e estudando o problema quando F e uma uniao de dois espacos projetivos complexos CPm U CPn ou de dois espacos projetivos quaterniônicos HPm U HPn, com exceção dos casos em que m e n sao ambos pares positivos. Neste caso específico, P. L. Q. Pergher e A. Ramos estabeleceram esta classificacao para o caso em que m e uma potencia de 2 e n e par. Com excecao deste caso particular, o caso geral em que m e n sao ambos pares e positivos permanece em aberto. O objetivo deste trabalho e obter a classificacao em pauta quando o conjunto de pontos fixos e a uniao de um espaco projetivo real com um espaco projetivo complexo, RPj U CPk, para quaisquer j e k, incluindo portanto o caso ate entao em aberto com j e k pares quaisquer. Alem disso, estendemos a classificaçao para Z^-açães no caso em que ambas as dimensães sao pares e positivas.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Matemática - PPGMUFSCarClassificaçãoCobordismo equivarianteMatemáticaCIENCIAS EXATAS E DA TERRA::MATEMATICAAções de Zr2 fixando RPj U CPkinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnline600600f365652a-a273-4c63-93e5-cb9755dde3d2info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARLICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstreams/d4944ed2-424c-4dfc-9f7d-dd25012ad1cf/downloadae0398b6f8b235e40ad82cba6c50031dMD52falseAnonymousREADORIGINALTeseAFL.pdfTeseAFL.pdfapplication/pdf1033495https://repositorio.ufscar.br/bitstreams/e9dafe1f-343b-4112-83c7-19f14a31f384/downloadc38b63f3923db5467cf5388d61ee9bc7MD51trueAnonymousREADTEXTTeseAFL.pdf.txtTeseAFL.pdf.txtExtracted texttext/plain196503https://repositorio.ufscar.br/bitstreams/0b0639d2-669e-454b-9cb7-06c845c4cd67/downloadd3a078fc42e81cbeef97f5bec0722808MD55falseAnonymousREADTHUMBNAILTeseAFL.pdf.jpgTeseAFL.pdf.jpgIM Thumbnailimage/jpeg4180https://repositorio.ufscar.br/bitstreams/ef9f92c7-2e45-4208-bc1a-4083692e4940/download9df2914314d20b4692c04db29ed34540MD56falseAnonymousREAD20.500.14289/94492025-02-05 19:04:19.307Acesso abertoopen.accessoai:repositorio.ufscar.br:20.500.14289/9449https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T22:04:19Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg== |
| dc.title.por.fl_str_mv |
Ações de Zr2 fixando RPj U CPk |
| title |
Ações de Zr2 fixando RPj U CPk |
| spellingShingle |
Ações de Zr2 fixando RPj U CPk Lima, Amanda Ferreira de Classificação Cobordismo equivariante Matemática CIENCIAS EXATAS E DA TERRA::MATEMATICA |
| title_short |
Ações de Zr2 fixando RPj U CPk |
| title_full |
Ações de Zr2 fixando RPj U CPk |
| title_fullStr |
Ações de Zr2 fixando RPj U CPk |
| title_full_unstemmed |
Ações de Zr2 fixando RPj U CPk |
| title_sort |
Ações de Zr2 fixando RPj U CPk |
| author |
Lima, Amanda Ferreira de |
| author_facet |
Lima, Amanda Ferreira de |
| author_role |
author |
| dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/3151366490993937 |
| dc.contributor.author.fl_str_mv |
Lima, Amanda Ferreira de |
| dc.contributor.advisor1.fl_str_mv |
Pergher, Pedro Luiz Queiroz |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/3328545959112090 |
| dc.contributor.authorID.fl_str_mv |
6f105b3d-f4fd-4529-afc7-5adc11590de9 |
| contributor_str_mv |
Pergher, Pedro Luiz Queiroz |
| dc.subject.por.fl_str_mv |
Classificação Cobordismo equivariante Matemática |
| topic |
Classificação Cobordismo equivariante Matemática CIENCIAS EXATAS E DA TERRA::MATEMATICA |
| dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::MATEMATICA |
| description |
The classification up to equivariant cobordism of smooth involutios (M, T) having fixed set F is a classical problem in cobordism theory. This classification has been studied for several cases of F, of which we highlight the following: For F = RPj, the j-dimensional real projective space, the classification was established by P. E. Conner, E. E. Floyd and R. E. Stong in [6] and [26]. In [24], D. C. Royster studied this problem with F = RPj U RPk, for naturals numbers j and k, except when j and k are both even and greater than zero. R. Oliveira, P. L. Q. Pergher and A. Ramos established the classification for F = RPj U RPk where j = 2 and k is even in [17]. The general case where j and k are both even and greater than zero is still open. For F = CPj and F = HPj, where CPj and HPj are the corresponding complex and quaternionic projective spaces, the classification was established by P. L. Q. Pergher and A. Ramos in [21]. They also established the classification for F = CPj U CPk and F = HPj U HPk, except when j and k are both even and greater than zero, but they resolved this problem for the particular case j = 2* and k even. As in the real case, also for complex and quaternionic projective spaces, the general case where j and k are both even and greater than zero is still open. In this work we deal with the classification, up to equivariant cobordism, of the pairs (M, T) for which the fixed point set is F = RPj U CPk, including the “hard”case where j and k are both even and greater than zero. We also extend the classification for Z^-actions in the case that both dimensions are even. |
| publishDate |
2017 |
| dc.date.issued.fl_str_mv |
2017-03-07 |
| dc.date.accessioned.fl_str_mv |
2018-02-20T12:41:02Z |
| dc.date.available.fl_str_mv |
2018-02-20T12:41:02Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
LIMA, Amanda Ferreira de. Ações de Zr2 fixando RPj U CPk. 2017. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/9449. |
| dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/20.500.14289/9449 |
| identifier_str_mv |
LIMA, Amanda Ferreira de. Ações de Zr2 fixando RPj U CPk. 2017. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/9449. |
| url |
https://repositorio.ufscar.br/handle/20.500.14289/9449 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.confidence.fl_str_mv |
600 600 |
| dc.relation.authority.fl_str_mv |
f365652a-a273-4c63-93e5-cb9755dde3d2 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Matemática - PPGM |
| dc.publisher.initials.fl_str_mv |
UFSCar |
| publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
| instname_str |
Universidade Federal de São Carlos (UFSCAR) |
| instacron_str |
UFSCAR |
| institution |
UFSCAR |
| reponame_str |
Repositório Institucional da UFSCAR |
| collection |
Repositório Institucional da UFSCAR |
| bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstreams/d4944ed2-424c-4dfc-9f7d-dd25012ad1cf/download https://repositorio.ufscar.br/bitstreams/e9dafe1f-343b-4112-83c7-19f14a31f384/download https://repositorio.ufscar.br/bitstreams/0b0639d2-669e-454b-9cb7-06c845c4cd67/download https://repositorio.ufscar.br/bitstreams/ef9f92c7-2e45-4208-bc1a-4083692e4940/download |
| bitstream.checksum.fl_str_mv |
ae0398b6f8b235e40ad82cba6c50031d c38b63f3923db5467cf5388d61ee9bc7 d3a078fc42e81cbeef97f5bec0722808 9df2914314d20b4692c04db29ed34540 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
| repository.mail.fl_str_mv |
repositorio.sibi@ufscar.br |
| _version_ |
1851688905098657792 |