Ações de Z2k com o conjunto de pontos fixos conexo e a propriedade CP
| Ano de defesa: | 2021 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de São Carlos
Câmpus São Carlos |
| Programa de Pós-Graduação: |
Programa de Pós-Graduação em Matemática - PPGM
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://repositorio.ufscar.br/handle/20.500.14289/15547 |
Resumo: | It is well known that if $\phi:G \times M^m \rightarrow M^m$ is a smooth action of a compact Lie group on a closed smooth manifold, then its fixed point set $F_{\phi} = \bigcup\limits_{i=0}^{n}F^{i}$ is a disjoint union of closed submanifolds of $M^m$, where $F^i$ denotes the union of $i$-dimensional components of $F_{\phi}$. In this way, given a compact Lie group $G$ and a union of closed smooth manifolds $F = \bigcup\limits_{i=0}^{n}F^{i}$, we can ask ourselves if exists such a $G$-action defined on a closed smooth manifold $M^m$ whose fixed point set is $F$. In this work, we discuss this problem for the cases where $G=\mathbb{Z}_2$ with $F=P(m,n) \cup \{point\}$, here $P(m,n)$ denoting a Dold manifold (see \ref{ExemploDold}) and $\{point\}$ is a unique point; and $G=\mathbb{Z}_2^k$ with $F=F^n$ or $F=F^n \cup F^{n-1}$ with $F^n$ and $F^{n-1}$ being connected. Here, $\mathbb{Z}_2^k$ is considered as the group generated by $k$ commuting involutions $T_1, \ldots, T_k$. Another question is concerning the CP property: more specifically, we say that a closed smooth manifold $F^n$ satisfies the CP property (compatible with the point) if there exists an involution $T:M^m \rightarrow M^m$ whose fixed point set is $F^n \cup \{point\}$. In chapter 3 we prove that the Dold manifolds $P(2^t-2,1)$ and $P(2,2^s-1)$ satisfy the CP property for all $t,s>1$. On the other hand, we will see that $P(m,n)$ do not satisfies CP for certain values of $m$ and $n$ (see the Introduction for details). This property was introduced in \cite{TeseJessica}, where several correlated results were obtained. In \cite{StongKos} Stong and Kosniowisky showed that if the fixed point set of an involution $(M^m,T)$ has only $n$-dimensional components and $m>2n$, then $(M^m,T)$ bounds equivariantly. In the same work, they proved that, if $m=2n$, then $(M^m,T)$ is equivariantly cobordant to the twist involution $(F^n \times F^n, \tau)$ where $\tau(x,y) = (y,x)$. In \cite{Onzedoiska} Pergher extended this result for $\mathbb{Z}_2^k$-actions $(M^m,\phi)$ whose fixed point set $F^n$ is connected. More specifically, he showed that, under these fixed point set conditions, if $m > 2^k n$, then $(M^m,\phi)$ bounds equivariantly, and if $m=2^k n$, then $(M^m,\phi)$ is equivariantly cobordant to the $\mathbb{Z}_2^k$-twist (see definition \ref{Z2ktwist}). In \cite{stongclass} Stong realized the classification of all cobordism classes of involutions $(M^m,T)$ whose fixed point set has only n-dimensional components and $m=2n-1$. In \cite{zedoisdois} Pergher extended this result for $\mathbb{Z}_2^2$-actions $(M^m,\phi)$ whose fixed point set $F^n$ is connected, with $m=4n-1$ and $m=4n-2$. In chapter 4 we extend this work of Pergher for $\mathbb{Z}_2^k$-actions by determining all possible cobordism class of $\mathbb{Z}_2^k$-actions whose fixed point set $F^n$ is connected and $2^k n-2^{k-1} \leq m < 2^k n$. The fixed-data of a $\mathbb{Z}_2^k$-action $(M^m,\phi)$ fixing $F$, denoted by $(F,\{\xi_{\rho}\})$, is $F$ with a list of $2^k-1$ vector bundles over $F$, where the vector bundles $\xi_{\rho}$ are obtained by a decomposition of the normal bundle of $F$ in $M^m$. In \cite{zedoisdois2}, P. Pergher and F. Figueira showed the following result: let $(M^m,\phi)$ be a $\mathbb{Z}_2^2$-action with fixed-data $(F^n;\xi_{\rho_1},\xi_{\rho_2},\xi_{\rho_3}) \cup (F^{n-1};\mu_{\rho_1},\mu_{\rho_2},\mu_{\rho_3})$, and suppose that there are at least two vector bundles in $\{\xi_{\rho_1},\xi_{\rho_2},\xi_{\rho_3}\}$ that have dimension greater than $n$, and at least one $\mu_{\rho}$ has dimension greater than $n-1$. Then $(M^m,\phi)$ bounds equivariantly. In that paper, the authors proposed the following generalization for $\mathbb{Z}_2^k$-actions: \textbf{Conjecture:} Let $(M,\psi)$ be a smooth $\mathbb{Z}_2^k$-action with fixed-data $(F^n, \{ \xi_{\rho} \}_{\rho}) \cup (F^{n-1}, \{ \mu_{\rho} \}_{\rho})$. Suppose that at least $2^{k-1}$ $\xi_{\rho's}$ over $F^n$ have dimension greater than $n$ and at least one $\mu_{\rho}$ has dimension greater than $n-1$. Then $(M,\psi)$ bounds equivariantly. This is the main result of chapter 5 of this thesis. But we achieved the following improvement of the above conjecture: the condition that at least one $\mu_{\rho}$ has dimension greater than $n-1$ can be removed. |
| id |
SCAR_f31d1fe09ab1662f198c8aaff4b39925 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufscar.br:20.500.14289/15547 |
| network_acronym_str |
SCAR |
| network_name_str |
Repositório Institucional da UFSCAR |
| repository_id_str |
|
| spelling |
Moraes, Renato Monteiro dePergher, Pedro Luiz Queirozhttp://lattes.cnpq.br/3328545959112090http://lattes.cnpq.br/649143652362106278f12c3e-6d59-4959-a4c1-aae7be40ec3e2022-02-07T22:37:19Z2022-02-07T22:37:19Z2021-10-27MORAES, Renato Monteiro de. Ações de Z2k com o conjunto de pontos fixos conexo e a propriedade CP. 2021. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/15547.https://repositorio.ufscar.br/handle/20.500.14289/15547It is well known that if $\phi:G \times M^m \rightarrow M^m$ is a smooth action of a compact Lie group on a closed smooth manifold, then its fixed point set $F_{\phi} = \bigcup\limits_{i=0}^{n}F^{i}$ is a disjoint union of closed submanifolds of $M^m$, where $F^i$ denotes the union of $i$-dimensional components of $F_{\phi}$. In this way, given a compact Lie group $G$ and a union of closed smooth manifolds $F = \bigcup\limits_{i=0}^{n}F^{i}$, we can ask ourselves if exists such a $G$-action defined on a closed smooth manifold $M^m$ whose fixed point set is $F$. In this work, we discuss this problem for the cases where $G=\mathbb{Z}_2$ with $F=P(m,n) \cup \{point\}$, here $P(m,n)$ denoting a Dold manifold (see \ref{ExemploDold}) and $\{point\}$ is a unique point; and $G=\mathbb{Z}_2^k$ with $F=F^n$ or $F=F^n \cup F^{n-1}$ with $F^n$ and $F^{n-1}$ being connected. Here, $\mathbb{Z}_2^k$ is considered as the group generated by $k$ commuting involutions $T_1, \ldots, T_k$. Another question is concerning the CP property: more specifically, we say that a closed smooth manifold $F^n$ satisfies the CP property (compatible with the point) if there exists an involution $T:M^m \rightarrow M^m$ whose fixed point set is $F^n \cup \{point\}$. In chapter 3 we prove that the Dold manifolds $P(2^t-2,1)$ and $P(2,2^s-1)$ satisfy the CP property for all $t,s>1$. On the other hand, we will see that $P(m,n)$ do not satisfies CP for certain values of $m$ and $n$ (see the Introduction for details). This property was introduced in \cite{TeseJessica}, where several correlated results were obtained. In \cite{StongKos} Stong and Kosniowisky showed that if the fixed point set of an involution $(M^m,T)$ has only $n$-dimensional components and $m>2n$, then $(M^m,T)$ bounds equivariantly. In the same work, they proved that, if $m=2n$, then $(M^m,T)$ is equivariantly cobordant to the twist involution $(F^n \times F^n, \tau)$ where $\tau(x,y) = (y,x)$. In \cite{Onzedoiska} Pergher extended this result for $\mathbb{Z}_2^k$-actions $(M^m,\phi)$ whose fixed point set $F^n$ is connected. More specifically, he showed that, under these fixed point set conditions, if $m > 2^k n$, then $(M^m,\phi)$ bounds equivariantly, and if $m=2^k n$, then $(M^m,\phi)$ is equivariantly cobordant to the $\mathbb{Z}_2^k$-twist (see definition \ref{Z2ktwist}). In \cite{stongclass} Stong realized the classification of all cobordism classes of involutions $(M^m,T)$ whose fixed point set has only n-dimensional components and $m=2n-1$. In \cite{zedoisdois} Pergher extended this result for $\mathbb{Z}_2^2$-actions $(M^m,\phi)$ whose fixed point set $F^n$ is connected, with $m=4n-1$ and $m=4n-2$. In chapter 4 we extend this work of Pergher for $\mathbb{Z}_2^k$-actions by determining all possible cobordism class of $\mathbb{Z}_2^k$-actions whose fixed point set $F^n$ is connected and $2^k n-2^{k-1} \leq m < 2^k n$. The fixed-data of a $\mathbb{Z}_2^k$-action $(M^m,\phi)$ fixing $F$, denoted by $(F,\{\xi_{\rho}\})$, is $F$ with a list of $2^k-1$ vector bundles over $F$, where the vector bundles $\xi_{\rho}$ are obtained by a decomposition of the normal bundle of $F$ in $M^m$. In \cite{zedoisdois2}, P. Pergher and F. Figueira showed the following result: let $(M^m,\phi)$ be a $\mathbb{Z}_2^2$-action with fixed-data $(F^n;\xi_{\rho_1},\xi_{\rho_2},\xi_{\rho_3}) \cup (F^{n-1};\mu_{\rho_1},\mu_{\rho_2},\mu_{\rho_3})$, and suppose that there are at least two vector bundles in $\{\xi_{\rho_1},\xi_{\rho_2},\xi_{\rho_3}\}$ that have dimension greater than $n$, and at least one $\mu_{\rho}$ has dimension greater than $n-1$. Then $(M^m,\phi)$ bounds equivariantly. In that paper, the authors proposed the following generalization for $\mathbb{Z}_2^k$-actions: \textbf{Conjecture:} Let $(M,\psi)$ be a smooth $\mathbb{Z}_2^k$-action with fixed-data $(F^n, \{ \xi_{\rho} \}_{\rho}) \cup (F^{n-1}, \{ \mu_{\rho} \}_{\rho})$. Suppose that at least $2^{k-1}$ $\xi_{\rho's}$ over $F^n$ have dimension greater than $n$ and at least one $\mu_{\rho}$ has dimension greater than $n-1$. Then $(M,\psi)$ bounds equivariantly. This is the main result of chapter 5 of this thesis. But we achieved the following improvement of the above conjecture: the condition that at least one $\mu_{\rho}$ has dimension greater than $n-1$ can be removed.É conhecido o fato que se $\phi:G \times M^m \rightarrow M^m$ é uma ação suave de um grupo de Lie compacto em uma variedade suave e fechada, então seu conjunto de pontos fixos $F_{\phi} = \bigcup\limits_{i=0}^{n}F^{i}$ é uma união disjunta de subvariedades fechadas de $M^m$, em que $F^i$ denota a união das componentes de dimensão $i$ de $F_{\phi}$. Com isso, fixados $G$ e uma união de variedades fechadas $F = \bigcup\limits_{i=0}^{n}F^{i}$, podemos perguntar se existe uma ação de $G$ em uma variedade fechada $M^m$ cujo conjunto de pontos fixos é $F$. Nesta tese, discutiremos este problema para os casos em que $G=\mathbb{Z}_2$ com $F=P(m,n) \cup \{ponto\}$, $P(m,n)$ denotando uma variedade de Dold (vide \ref{ExemploDold}) e $\{ponto\}$ representa o espaço constituído por um único ponto; e $G=\mathbb{Z}_2^k$ com $F=F^n$ ou $F=F^n \cup F^{n-1}$ com $F^n$ e $F^{n-1}$ conexas. Neste contexto, $\mathbb{Z}_2^k$ é definido como o grupo gerado por $k$ involuções comutantes $T_1, \ldots, T_k$, então sua ação em uma variedade fechada $M^m$ equivale a ação de k involuções comutantes $T_1, \ldots, T_k:M^m \rightarrow M^m$; em particular, uma ação de $\mathbb{Z}_2$ em $M^m$ se resume a uma única involução $T:M^m \rightarrow M^m$. Outros tipos de questões que serão tratadas são relativas à propriedade CP. Especificamente, dizemos que uma variedade fechada $F^n$ satisfaz a propriedade CP (compatível com o ponto) se existe uma involução $T:M^n \rightarrow M^n$ cujo conjunto de pontos fixos é $F^n \cup \{ponto\}$. Neste trabalho provaremos que as variedades de Dold $P(2^t-2,1)$ e $P(2,2^s-1)$ satisfazem a propriedade CP para quaisquer $t,s>1$. Veremos também alguns casos em que $P(m,n)$ não satisfaz a propriedade CP, para certos m e n; vide a Introdução desta tese para maiores detalhes. Tal conceito foi introduzido em [22], onde vários resultados correlatos foram obtidos. Em \cite{StongKos}, Stong e Kosniowisky provaram que se $(M^m,T)$ é uma involução cujo conjunto de pontos fixos só possui componentes de dimensão $n$ e $m>2n$, então $(M^m,T)$ borda equivariantemente. Além disso, nesse mesmo trabalho eles provaram que, se $m=2n$, então $(M^m,T)$ é equivariantemente cobordante à involução twist $(F^n \times F^n, \tau)$, onde $\tau(x,y) = (y,x)$. Em \cite{Onzedoiska}, Pergher estendeu este resultado para ações de $\mathbb{Z}_2^k$, $(M^m,\phi)$, cujo conjunto de pontos fixos $F^n$ é conexo e n dimensional, ao provar que, em tais condições, se $m > 2^k n$ então $(M^m,\phi)$ borda equivariantemente, e se $m=2^k n$, então $(M^m,\phi)$ é equivariantemente cobordante a ação $\mathbb{Z}_2^k$-twist (vide Definição \ref{Z2ktwist}). Em \cite{stongclass} Stong realizou a classificação das involuções $(M^m,T)$ cujo conjunto de pontos fixos só possui componentes de dimensão $n$, e onde $m=2n-1$. Em \cite{zedoisdois}, Pergher estendeu este resultado para $\mathbb{Z}_2^2$-ações $(M^m,\phi)$ cujo conjunto de pontos fixos $F^n$ é conexo, n-dimensional, com $m=4n-1$ e $m=4n-2$. Neste trabalho, estenderemos esse resultado de Pergher para $\mathbb{Z}_2^k$-ações; vamos classificar as ações de $\mathbb{Z}_2^k$ cujo conjunto de pontos fixos $F^n$ é conexo, n dimensional, e $2^k n-2^{k-1} \leq m < 2^k n$. Consideramos este o resultado mais importante desta tese. O fixed-data de uma ação de $\mathbb{Z}_2^k$ $(M^m,\phi)$ fixando $F$ é $F$ munido de uma lista de $2^k-1$ fibrados sobre $F$, denotado por $(F,\{\xi_{\rho}\})$, em que os fibrados $\xi_{\rho}$ são obtidos por uma determinada decomposição do fibrado normal de $F$ em $M^m$. Em \cite{zedoisdois2} P. Pergher e F. Figueira provaram o seguinte resultado: seja $(M^m,\phi)$ uma $\mathbb{Z}_2^2$-ação com fixed-data $(F^n;\xi_{\rho_1},\xi_{\rho_2},\xi_{\rho_3}) \cup (F^{n-1};\mu_{\rho_1},\mu_{\rho_2},\mu_{\rho_3})$, suponha que dois fibrados na lista $\{\xi_{\rho_1},\xi_{\rho_2},\xi_{\rho_3}\}$ tenham dimensão maior que $n$ e pelo menos um fibrado na lista $\{\mu_{\rho_1},\mu_{\rho_2},\mu_{\rho_3}\}$ tem dimensão maior que $n-1$. Então $(M^m,\phi)$ borda equivariantemente. No final do artigo, os autores propuseram a seguinte generalização deste resultado, para $\mathbb{Z}_2^k$-ações: \textbf{Conjectura:} Seja $(M,\psi)$ uma ação de $\mathbb{Z}_2^k$ com fixed-data $(F^n, \{ \xi_{\rho} \}_{\rho}) \cup (F^{n-1}, \{ \mu_{\rho} \}_{\rho})$. Suponha que $2^{k-1}$ fibrados sobre $F^n$ tenham dimensão maior que $n$ e exista um fibrado sobre $F^{n-1}$ com dimensão maior que $n-1$. Então $(M,\psi)$ borda equivariantemente. Esta conjectura proposta por Pergher e Figueira será provada no capítulo 5, com a melhoria da mesma sendo obtida por remover a hipótese de existir pelo menos um fibrado sobre $F^{n-1}$ que tenha dimensão maior que $n-1$.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPES: Código de Financiamento 001porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Matemática - PPGMUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessZ2k açõesCobordismo equivarianteCobordismo simultâneoZ2k actionsEquivariant cobordismSimultaneous cobordismStiefel-WhitneyCharacteristic numberFixed dataCIENCIAS EXATAS E DA TERRA::MATEMATICA::GEOMETRIA E TOPOLOGIAAções de Z2k com o conjunto de pontos fixos conexo e a propriedade CPZ2k actions with connected fixed point set and the CP propertyinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis600600f365652a-a273-4c63-93e5-cb9755dde3d2reponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTese Renato Monteiro de Moraes.pdfTese Renato Monteiro de Moraes.pdfTeseapplication/pdf618816https://repositorio.ufscar.br/bitstreams/0963c93b-d311-4721-9915-536cea01f16e/downloadfb83c562a19d8956c58baee6c7be8debMD51trueAnonymousREADcomprovante Renato Monteiro de Moraes.pdfcomprovante Renato Monteiro de Moraes.pdfCarta comprovanteapplication/pdf107969https://repositorio.ufscar.br/bitstreams/a97952e2-c3b3-4635-a191-4af862eb1441/downloadf0f25c72383995aa71b0338e00f071e4MD52falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstreams/94baff25-06ee-45ae-957e-9f5e88daae84/downloade39d27027a6cc9cb039ad269a5db8e34MD53falseAnonymousREADTEXTTese Renato Monteiro de Moraes.pdf.txtTese Renato Monteiro de Moraes.pdf.txtExtracted texttext/plain206692https://repositorio.ufscar.br/bitstreams/52686c0a-f143-4998-a1d7-80fd8c31ac41/downloada05b278f72d321859a717ffaa1a9778cMD58falseAnonymousREADcomprovante Renato Monteiro de Moraes.pdf.txtcomprovante Renato Monteiro de Moraes.pdf.txtExtracted texttext/plain1https://repositorio.ufscar.br/bitstreams/45ab2582-074a-4d55-b3c6-e493270c9409/download68b329da9893e34099c7d8ad5cb9c940MD510falseTHUMBNAILTese Renato Monteiro de Moraes.pdf.jpgTese Renato Monteiro de Moraes.pdf.jpgIM Thumbnailimage/jpeg7851https://repositorio.ufscar.br/bitstreams/7ea8cdf6-03fe-4e2d-a0c6-bdc9ff4e8c4a/download4b20f5d26d39842825db6159060a1847MD59falseAnonymousREADcomprovante Renato Monteiro de Moraes.pdf.jpgcomprovante Renato Monteiro de Moraes.pdf.jpgIM Thumbnailimage/jpeg12386https://repositorio.ufscar.br/bitstreams/954ae581-fef0-4ff6-a208-951342c188f9/download01b94047a8382845f1b9d112d84d82c4MD511false20.500.14289/155472025-02-05 20:48:59.167http://creativecommons.org/licenses/by-nc-nd/3.0/br/Attribution-NonCommercial-NoDerivs 3.0 Brazilopen.accessoai:repositorio.ufscar.br:20.500.14289/15547https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T23:48:59Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
| dc.title.por.fl_str_mv |
Ações de Z2k com o conjunto de pontos fixos conexo e a propriedade CP |
| dc.title.alternative.eng.fl_str_mv |
Z2k actions with connected fixed point set and the CP property |
| title |
Ações de Z2k com o conjunto de pontos fixos conexo e a propriedade CP |
| spellingShingle |
Ações de Z2k com o conjunto de pontos fixos conexo e a propriedade CP Moraes, Renato Monteiro de Z2k ações Cobordismo equivariante Cobordismo simultâneo Z2k actions Equivariant cobordism Simultaneous cobordism Stiefel-Whitney Characteristic number Fixed data CIENCIAS EXATAS E DA TERRA::MATEMATICA::GEOMETRIA E TOPOLOGIA |
| title_short |
Ações de Z2k com o conjunto de pontos fixos conexo e a propriedade CP |
| title_full |
Ações de Z2k com o conjunto de pontos fixos conexo e a propriedade CP |
| title_fullStr |
Ações de Z2k com o conjunto de pontos fixos conexo e a propriedade CP |
| title_full_unstemmed |
Ações de Z2k com o conjunto de pontos fixos conexo e a propriedade CP |
| title_sort |
Ações de Z2k com o conjunto de pontos fixos conexo e a propriedade CP |
| author |
Moraes, Renato Monteiro de |
| author_facet |
Moraes, Renato Monteiro de |
| author_role |
author |
| dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/6491436523621062 |
| dc.contributor.author.fl_str_mv |
Moraes, Renato Monteiro de |
| dc.contributor.advisor1.fl_str_mv |
Pergher, Pedro Luiz Queiroz |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/3328545959112090 |
| dc.contributor.authorID.fl_str_mv |
78f12c3e-6d59-4959-a4c1-aae7be40ec3e |
| contributor_str_mv |
Pergher, Pedro Luiz Queiroz |
| dc.subject.por.fl_str_mv |
Z2k ações Cobordismo equivariante Cobordismo simultâneo |
| topic |
Z2k ações Cobordismo equivariante Cobordismo simultâneo Z2k actions Equivariant cobordism Simultaneous cobordism Stiefel-Whitney Characteristic number Fixed data CIENCIAS EXATAS E DA TERRA::MATEMATICA::GEOMETRIA E TOPOLOGIA |
| dc.subject.eng.fl_str_mv |
Z2k actions Equivariant cobordism Simultaneous cobordism Stiefel-Whitney Characteristic number Fixed data |
| dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::MATEMATICA::GEOMETRIA E TOPOLOGIA |
| description |
It is well known that if $\phi:G \times M^m \rightarrow M^m$ is a smooth action of a compact Lie group on a closed smooth manifold, then its fixed point set $F_{\phi} = \bigcup\limits_{i=0}^{n}F^{i}$ is a disjoint union of closed submanifolds of $M^m$, where $F^i$ denotes the union of $i$-dimensional components of $F_{\phi}$. In this way, given a compact Lie group $G$ and a union of closed smooth manifolds $F = \bigcup\limits_{i=0}^{n}F^{i}$, we can ask ourselves if exists such a $G$-action defined on a closed smooth manifold $M^m$ whose fixed point set is $F$. In this work, we discuss this problem for the cases where $G=\mathbb{Z}_2$ with $F=P(m,n) \cup \{point\}$, here $P(m,n)$ denoting a Dold manifold (see \ref{ExemploDold}) and $\{point\}$ is a unique point; and $G=\mathbb{Z}_2^k$ with $F=F^n$ or $F=F^n \cup F^{n-1}$ with $F^n$ and $F^{n-1}$ being connected. Here, $\mathbb{Z}_2^k$ is considered as the group generated by $k$ commuting involutions $T_1, \ldots, T_k$. Another question is concerning the CP property: more specifically, we say that a closed smooth manifold $F^n$ satisfies the CP property (compatible with the point) if there exists an involution $T:M^m \rightarrow M^m$ whose fixed point set is $F^n \cup \{point\}$. In chapter 3 we prove that the Dold manifolds $P(2^t-2,1)$ and $P(2,2^s-1)$ satisfy the CP property for all $t,s>1$. On the other hand, we will see that $P(m,n)$ do not satisfies CP for certain values of $m$ and $n$ (see the Introduction for details). This property was introduced in \cite{TeseJessica}, where several correlated results were obtained. In \cite{StongKos} Stong and Kosniowisky showed that if the fixed point set of an involution $(M^m,T)$ has only $n$-dimensional components and $m>2n$, then $(M^m,T)$ bounds equivariantly. In the same work, they proved that, if $m=2n$, then $(M^m,T)$ is equivariantly cobordant to the twist involution $(F^n \times F^n, \tau)$ where $\tau(x,y) = (y,x)$. In \cite{Onzedoiska} Pergher extended this result for $\mathbb{Z}_2^k$-actions $(M^m,\phi)$ whose fixed point set $F^n$ is connected. More specifically, he showed that, under these fixed point set conditions, if $m > 2^k n$, then $(M^m,\phi)$ bounds equivariantly, and if $m=2^k n$, then $(M^m,\phi)$ is equivariantly cobordant to the $\mathbb{Z}_2^k$-twist (see definition \ref{Z2ktwist}). In \cite{stongclass} Stong realized the classification of all cobordism classes of involutions $(M^m,T)$ whose fixed point set has only n-dimensional components and $m=2n-1$. In \cite{zedoisdois} Pergher extended this result for $\mathbb{Z}_2^2$-actions $(M^m,\phi)$ whose fixed point set $F^n$ is connected, with $m=4n-1$ and $m=4n-2$. In chapter 4 we extend this work of Pergher for $\mathbb{Z}_2^k$-actions by determining all possible cobordism class of $\mathbb{Z}_2^k$-actions whose fixed point set $F^n$ is connected and $2^k n-2^{k-1} \leq m < 2^k n$. The fixed-data of a $\mathbb{Z}_2^k$-action $(M^m,\phi)$ fixing $F$, denoted by $(F,\{\xi_{\rho}\})$, is $F$ with a list of $2^k-1$ vector bundles over $F$, where the vector bundles $\xi_{\rho}$ are obtained by a decomposition of the normal bundle of $F$ in $M^m$. In \cite{zedoisdois2}, P. Pergher and F. Figueira showed the following result: let $(M^m,\phi)$ be a $\mathbb{Z}_2^2$-action with fixed-data $(F^n;\xi_{\rho_1},\xi_{\rho_2},\xi_{\rho_3}) \cup (F^{n-1};\mu_{\rho_1},\mu_{\rho_2},\mu_{\rho_3})$, and suppose that there are at least two vector bundles in $\{\xi_{\rho_1},\xi_{\rho_2},\xi_{\rho_3}\}$ that have dimension greater than $n$, and at least one $\mu_{\rho}$ has dimension greater than $n-1$. Then $(M^m,\phi)$ bounds equivariantly. In that paper, the authors proposed the following generalization for $\mathbb{Z}_2^k$-actions: \textbf{Conjecture:} Let $(M,\psi)$ be a smooth $\mathbb{Z}_2^k$-action with fixed-data $(F^n, \{ \xi_{\rho} \}_{\rho}) \cup (F^{n-1}, \{ \mu_{\rho} \}_{\rho})$. Suppose that at least $2^{k-1}$ $\xi_{\rho's}$ over $F^n$ have dimension greater than $n$ and at least one $\mu_{\rho}$ has dimension greater than $n-1$. Then $(M,\psi)$ bounds equivariantly. This is the main result of chapter 5 of this thesis. But we achieved the following improvement of the above conjecture: the condition that at least one $\mu_{\rho}$ has dimension greater than $n-1$ can be removed. |
| publishDate |
2021 |
| dc.date.issued.fl_str_mv |
2021-10-27 |
| dc.date.accessioned.fl_str_mv |
2022-02-07T22:37:19Z |
| dc.date.available.fl_str_mv |
2022-02-07T22:37:19Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
MORAES, Renato Monteiro de. Ações de Z2k com o conjunto de pontos fixos conexo e a propriedade CP. 2021. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/15547. |
| dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/20.500.14289/15547 |
| identifier_str_mv |
MORAES, Renato Monteiro de. Ações de Z2k com o conjunto de pontos fixos conexo e a propriedade CP. 2021. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/15547. |
| url |
https://repositorio.ufscar.br/handle/20.500.14289/15547 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.confidence.fl_str_mv |
600 600 |
| dc.relation.authority.fl_str_mv |
f365652a-a273-4c63-93e5-cb9755dde3d2 |
| dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Matemática - PPGM |
| dc.publisher.initials.fl_str_mv |
UFSCar |
| publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
| instname_str |
Universidade Federal de São Carlos (UFSCAR) |
| instacron_str |
UFSCAR |
| institution |
UFSCAR |
| reponame_str |
Repositório Institucional da UFSCAR |
| collection |
Repositório Institucional da UFSCAR |
| bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstreams/0963c93b-d311-4721-9915-536cea01f16e/download https://repositorio.ufscar.br/bitstreams/a97952e2-c3b3-4635-a191-4af862eb1441/download https://repositorio.ufscar.br/bitstreams/94baff25-06ee-45ae-957e-9f5e88daae84/download https://repositorio.ufscar.br/bitstreams/52686c0a-f143-4998-a1d7-80fd8c31ac41/download https://repositorio.ufscar.br/bitstreams/45ab2582-074a-4d55-b3c6-e493270c9409/download https://repositorio.ufscar.br/bitstreams/7ea8cdf6-03fe-4e2d-a0c6-bdc9ff4e8c4a/download https://repositorio.ufscar.br/bitstreams/954ae581-fef0-4ff6-a208-951342c188f9/download |
| bitstream.checksum.fl_str_mv |
fb83c562a19d8956c58baee6c7be8deb f0f25c72383995aa71b0338e00f071e4 e39d27027a6cc9cb039ad269a5db8e34 a05b278f72d321859a717ffaa1a9778c 68b329da9893e34099c7d8ad5cb9c940 4b20f5d26d39842825db6159060a1847 01b94047a8382845f1b9d112d84d82c4 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
| repository.mail.fl_str_mv |
repositorio.sibi@ufscar.br |
| _version_ |
1851688893118676992 |