Carrier dynamics of low-dimensional semiconductors: from quantum wells and quantum dots to resonant tunneling devices

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Naranjo Lopez, Andrea
Orientador(a): Teodoro, Marcio Daldin lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Física - PPGF
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/15040
Resumo: This thesis aims to study heterostructures and devices that play a fundamental role in modern nanoelectronic technologies, focusing on group III-V semiconductor materials, especially arsenide-based systems, for photodetection applications. The area under discussion deals mainly with phenomena related to the effects of quantum confinement of the charge carrier energetic states that arise when the dimensionality is reduced. It is also discussed the macroscopic implications of this confinement, mainly on the optical and transport properties of the studied heterostructures. This work will address the effects of heterostructures with quantum wells and the influence of introducing quantum dots within their architecture. Beginning with polarization-resolved photoluminescence in pure GaAs quantum wells to get a first and better understanding of the properties of this basic system, especially its excitonic complexes. The results show excitons, biexcitons and trions emissions tuned by temperature, excitation power and external magnetic fields. Excitons and biexcitons show essential differences in their dependence on the external field. While the Zeeman splitting of biexcitons is monotonically dependent on the magnetic field, with a nearly constant g-factor, the behavior of the exciton energy division is not monotonous, involving a signal inversion as a function of the magnetic field. Remarkably, a trion resonance emergence in a finite magnetic field appears at low power excitation and sigma+ polarization. The non-trivial dependence of the energy levels with the external magnetic field, together with the particular polarization trion emission, denotes an intricate exciton and trion dynamics, which a set of coupled rate equations can describe. The theoretical approach used shows that a rapid spin-flip process could lead to an asymmetric spin emission and contrasting spin dynamics of the exciton complexes induced by their charge. Once the basic system has been developed and studied, the ideas and concepts in systems with more potential technological applications are related. In this context, one of the most widely investigated semiconductor devices is the resonant tunneling diode, not only because it performs optoelectronic responses strongly dependent on external parameters such as voltage, incident light and temperature, also due to the vast physical phenomena that it allows to address and study. Since excitation, accumulation, and charge transport control are the operating parameters and responsiveness of the device, it is critical to study how these three processes are intertwined. Here, the electroluminescence of these diodes has been used to investigate the dynamics and charge carrier accumulation through the combination of magneto-electroluminescence and magnetotransport measurements. Magneto-electroluminescence results shed light on blind spots where magnetotransport media are no longer effective and enabling the assessment of intrinsic charge carrier transport processes without the need to illuminate the sample. Finally, a resonant tunneling diode with an integrated InGaAs quantum dot layer is studied, seeking the benefit derived from the main characteristic of this type of diode to carry out photodetection; the sensitivity of the tunneling current to changes in the local electrostatic potential. In principle, this could lead to the detection of individual photons, i.e., photon numerical resolution. Transport, photocurrent and electroluminescence spectroscopy results reveal that the accumulation of charge carriers is maintained by the quantum dots, demonstrating that the proposed structure is susceptible to capturing individual photoexcited holes. A theoretical explanation is proposed, where the product of different voltage-dependent functions defines how the accumulation of charge carriers induced the voltage change and aims to quantify the single-photon detection process.
id SCAR_348b9d83240bd264649994c3a53afcd0
oai_identifier_str oai:repositorio.ufscar.br:20.500.14289/15040
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str
spelling Naranjo Lopez, AndreaTeodoro, Marcio Daldinhttp://lattes.cnpq.br/5602634309535528http://lattes.cnpq.br/7691199952523844c4896897-9cc0-4784-ba37-bb51952b722c2021-10-22T18:54:57Z2021-10-22T18:54:57Z2021-07-22NARANJO LOPEZ, Andrea. Carrier dynamics of low-dimensional semiconductors: from quantum wells and quantum dots to resonant tunneling devices. 2021. Tese (Doutorado em Física) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/15040.https://repositorio.ufscar.br/handle/20.500.14289/15040This thesis aims to study heterostructures and devices that play a fundamental role in modern nanoelectronic technologies, focusing on group III-V semiconductor materials, especially arsenide-based systems, for photodetection applications. The area under discussion deals mainly with phenomena related to the effects of quantum confinement of the charge carrier energetic states that arise when the dimensionality is reduced. It is also discussed the macroscopic implications of this confinement, mainly on the optical and transport properties of the studied heterostructures. This work will address the effects of heterostructures with quantum wells and the influence of introducing quantum dots within their architecture. Beginning with polarization-resolved photoluminescence in pure GaAs quantum wells to get a first and better understanding of the properties of this basic system, especially its excitonic complexes. The results show excitons, biexcitons and trions emissions tuned by temperature, excitation power and external magnetic fields. Excitons and biexcitons show essential differences in their dependence on the external field. While the Zeeman splitting of biexcitons is monotonically dependent on the magnetic field, with a nearly constant g-factor, the behavior of the exciton energy division is not monotonous, involving a signal inversion as a function of the magnetic field. Remarkably, a trion resonance emergence in a finite magnetic field appears at low power excitation and sigma+ polarization. The non-trivial dependence of the energy levels with the external magnetic field, together with the particular polarization trion emission, denotes an intricate exciton and trion dynamics, which a set of coupled rate equations can describe. The theoretical approach used shows that a rapid spin-flip process could lead to an asymmetric spin emission and contrasting spin dynamics of the exciton complexes induced by their charge. Once the basic system has been developed and studied, the ideas and concepts in systems with more potential technological applications are related. In this context, one of the most widely investigated semiconductor devices is the resonant tunneling diode, not only because it performs optoelectronic responses strongly dependent on external parameters such as voltage, incident light and temperature, also due to the vast physical phenomena that it allows to address and study. Since excitation, accumulation, and charge transport control are the operating parameters and responsiveness of the device, it is critical to study how these three processes are intertwined. Here, the electroluminescence of these diodes has been used to investigate the dynamics and charge carrier accumulation through the combination of magneto-electroluminescence and magnetotransport measurements. Magneto-electroluminescence results shed light on blind spots where magnetotransport media are no longer effective and enabling the assessment of intrinsic charge carrier transport processes without the need to illuminate the sample. Finally, a resonant tunneling diode with an integrated InGaAs quantum dot layer is studied, seeking the benefit derived from the main characteristic of this type of diode to carry out photodetection; the sensitivity of the tunneling current to changes in the local electrostatic potential. In principle, this could lead to the detection of individual photons, i.e., photon numerical resolution. Transport, photocurrent and electroluminescence spectroscopy results reveal that the accumulation of charge carriers is maintained by the quantum dots, demonstrating that the proposed structure is susceptible to capturing individual photoexcited holes. A theoretical explanation is proposed, where the product of different voltage-dependent functions defines how the accumulation of charge carriers induced the voltage change and aims to quantify the single-photon detection process.Esta tese visa estudar heteroestruturas e dispositivos que desempenham um papel fundamental nas tecnologias nanoeletrônicas modernas. Focando nos materiais semicondutores do grupo III-V, especialmente sistemas baseados em arsenetos para aplicações em fotodetecção, serão tratados fenômenos relacionados com os efeitos do confinamento quântico dos estados energéticos de portadores de carga, os quais surgem quando a dimensionalidade é reduzida. Além disso, são discutidas as implicações macroscópicas desse confinamento principalmente nas propriedades ópticas e de transporte de diferentes dispositivos, os efeitos das heteroestruturas do tipo poço quântico de dupla barreira e a influência da introdução de pontos quânticos em sua arquitetura. Realizadas as medidas de fotoluminescência resolvida por polarização em um poço quântico de GaAs, obteve-se uma melhor compreensão das propriedades desse sistema básico, especialmente de seus complexos excitônicos. Os resultados mostram emissões de éxcitons, biexcitons e tríons em função da temperatura, potência de excitação e campos magnéticos externos. Os éxcitons e biexcitons mostram diferenças essenciais em sua dependência quando aplicado um campo magnetico externo. Enquanto o desdobramento Zeeman dos biexcitons é monotonicamente dependente do campo magnético, com um fator g quase constante, os éxcitons apresentam um comportamento não monotônico, envolvendo uma inversão de sinal em função do campo magnético aplicado. O aparecimento da emissão ressonante do trion em um campo magnético finito, para baixas potências de excitação e uma dada polarização de spin (sigma+) é notório. A dependência não trivial dos níveis de energia com o campo magnético externo, junto com a emissão particular do mesmo para uma polarização, denota uma dinâmica acoplada entre éxcitons e trions, que pode ser descrita por um conjunto de equações de taxa acopladas. A abordagem teórica utilizada mostra que um processo rápido de spin-flip poderia levar a uma emissão assimétrica e uma dinâmica de spin contrastante dos complexos excitônicos induzidos por sua carga. Uma vez que o sistema básico foi estudado, ideias e conceitos em sistemas com potenciais aplicações tecnológicas são desenvolvidas. Nesse contexto, um dos dispositivos semicondutores mais investigado é o diodo de tunelamento ressonante, não só porque executa respostas optoeletrônicas fortemente dependentes de parâmetros externos, como radiação, temperatura, campos elétricos e magnéticos, mas também devido aos vastos fenômenos físicos que ele permite abordar. Por exemplo, a geração, acumulação e controle de portadores de carga, são alguns dos parâmetros operacionais e de resposta de dispositivos. Portanto, torna-se fundamental estudar como esses três processos estão interligados. Aqui, a eletroluminescência desses diodos tem sido utilizada para investigar a dinâmica e o acúmulo de portadores de carga através da combinação de medidas de magnetoeletroluminescência e magnetotransporte. Os resultados da magnetoeletroluminescência, permitem, entretanto a avaliação dos processos de transporte de carga intrínsecos sem a necessidade de aplicação de luz externa, onde os meios de magnetotransporte não são mais eficazes. Finalmente, foi estudado um diodo de tunelamento ressonante com uma camada de pontos quânticos de InGaAs integrada, buscando o benefício derivado da característica principal do mesmo, a sensibilidade da corrente de tunelamento às mudanças no potencial eletrostático local, para realizar a fotodetecção. Em princípio, isso poderia levar à detecção de fótons individuais, ou seja, à resolução numérica de fótons. Os resultados de espectroscopia de transporte, fotocorrente e eletroluminescência revelam que o acúmulo de portadores de carga é mantido pelos pontos quânticos, demonstrando que a estrutura proposta é suscetível à captura individual de buracos fotoexcitados. É proposta uma explicação teórica na qual o produto de funções dependentes da voltagem aplicada define como o acúmulo de portadores de carga induz um deslocamento na voltagem de operação do dispositivo e visa quantificar o processo de detecção de um fóton único.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPES: Código de Financiamento 001engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Física - PPGFUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessSemiconductorsQuantum wellQuantum dotsResonant tunneling diodeOpticsNanoelectronicsSemicondutoresPoços quânticosPontos quânticosDiodos de tunelamento ressonanteÓpticaNanoelectronicaCIENCIAS EXATAS E DA TERRA::FISICA::FISICA DA MATERIA CONDENSADACarrier dynamics of low-dimensional semiconductors: from quantum wells and quantum dots to resonant tunneling devicesDinâmica de portadores de carga em semicondutores de baixa dimensionalidade: de poços quânticos e pontos quânticos a dispositivos de tunelamento ressonanteinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis4ee30d70-e6cf-40ab-bb84-b9a783a8105dreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstreams/a9c57018-60f1-4d2c-9a77-b0a5e27f4c68/downloade39d27027a6cc9cb039ad269a5db8e34MD55falseAnonymousREADORIGINALCarrier dynamics of low dimensional semiconductors from quantum wells and quantum dots to resonant tuneling devices.pdfCarrier dynamics of low dimensional semiconductors from quantum wells and quantum dots to resonant tuneling devices.pdfMain Ph.D. thesis textapplication/pdf40093854https://repositorio.ufscar.br/bitstreams/c749416d-3fb4-4582-af56-7a1daba14879/downloade39ebe4f5dd907e2fe3558e484d4626eMD53trueAnonymousREADCartaOrientadorBCO.pdfCartaOrientadorBCO.pdfCarta comprovanteapplication/pdf44084https://repositorio.ufscar.br/bitstreams/3d16f72f-f42e-46f0-bb95-81a0b73cfe98/download3675e932f1e4237def3e9db7b5ac2e2eMD54falseTEXTCarrier dynamics of low dimensional semiconductors from quantum wells and quantum dots to resonant tuneling devices.pdf.txtCarrier dynamics of low dimensional semiconductors from quantum wells and quantum dots to resonant tuneling devices.pdf.txtExtracted texttext/plain224258https://repositorio.ufscar.br/bitstreams/325655ee-1987-4565-a953-5fe5ed9e02e0/download017933137e974b67361a4d0dbc6695cbMD510falseAnonymousREADCartaOrientadorBCO.pdf.txtCartaOrientadorBCO.pdf.txtExtracted texttext/plain1130https://repositorio.ufscar.br/bitstreams/b3fb1531-5ffe-4f2e-bc95-f12d59e53547/download3999c31bcb61eaae644c21fc6742bb5cMD512falseTHUMBNAILCarrier dynamics of low dimensional semiconductors from quantum wells and quantum dots to resonant tuneling devices.pdf.jpgCarrier dynamics of low dimensional semiconductors from quantum wells and quantum dots to resonant tuneling devices.pdf.jpgIM Thumbnailimage/jpeg8714https://repositorio.ufscar.br/bitstreams/f93f850b-b4ed-45b0-831d-3c8163da9f7c/download35861103054b66d51750370f55311857MD511falseAnonymousREADCartaOrientadorBCO.pdf.jpgCartaOrientadorBCO.pdf.jpgIM Thumbnailimage/jpeg3503https://repositorio.ufscar.br/bitstreams/5e4f9769-7af8-4282-aa97-cb6e1e286230/downloadb527a1ee8a093d6662bc23cf4261674dMD513false20.500.14289/150402025-02-05 20:18:33.376http://creativecommons.org/licenses/by-nc-nd/3.0/br/Attribution-NonCommercial-NoDerivs 3.0 Brazilopen.accessoai:repositorio.ufscar.br:20.500.14289/15040https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T23:18:33Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.eng.fl_str_mv Carrier dynamics of low-dimensional semiconductors: from quantum wells and quantum dots to resonant tunneling devices
dc.title.alternative.por.fl_str_mv Dinâmica de portadores de carga em semicondutores de baixa dimensionalidade: de poços quânticos e pontos quânticos a dispositivos de tunelamento ressonante
title Carrier dynamics of low-dimensional semiconductors: from quantum wells and quantum dots to resonant tunneling devices
spellingShingle Carrier dynamics of low-dimensional semiconductors: from quantum wells and quantum dots to resonant tunneling devices
Naranjo Lopez, Andrea
Semiconductors
Quantum well
Quantum dots
Resonant tunneling diode
Optics
Nanoelectronics
Semicondutores
Poços quânticos
Pontos quânticos
Diodos de tunelamento ressonante
Óptica
Nanoelectronica
CIENCIAS EXATAS E DA TERRA::FISICA::FISICA DA MATERIA CONDENSADA
title_short Carrier dynamics of low-dimensional semiconductors: from quantum wells and quantum dots to resonant tunneling devices
title_full Carrier dynamics of low-dimensional semiconductors: from quantum wells and quantum dots to resonant tunneling devices
title_fullStr Carrier dynamics of low-dimensional semiconductors: from quantum wells and quantum dots to resonant tunneling devices
title_full_unstemmed Carrier dynamics of low-dimensional semiconductors: from quantum wells and quantum dots to resonant tunneling devices
title_sort Carrier dynamics of low-dimensional semiconductors: from quantum wells and quantum dots to resonant tunneling devices
author Naranjo Lopez, Andrea
author_facet Naranjo Lopez, Andrea
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/7691199952523844
dc.contributor.author.fl_str_mv Naranjo Lopez, Andrea
dc.contributor.advisor1.fl_str_mv Teodoro, Marcio Daldin
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/5602634309535528
dc.contributor.authorID.fl_str_mv c4896897-9cc0-4784-ba37-bb51952b722c
contributor_str_mv Teodoro, Marcio Daldin
dc.subject.eng.fl_str_mv Semiconductors
Quantum well
Quantum dots
Resonant tunneling diode
Optics
Nanoelectronics
topic Semiconductors
Quantum well
Quantum dots
Resonant tunneling diode
Optics
Nanoelectronics
Semicondutores
Poços quânticos
Pontos quânticos
Diodos de tunelamento ressonante
Óptica
Nanoelectronica
CIENCIAS EXATAS E DA TERRA::FISICA::FISICA DA MATERIA CONDENSADA
dc.subject.por.fl_str_mv Semicondutores
Poços quânticos
Pontos quânticos
Diodos de tunelamento ressonante
Óptica
Nanoelectronica
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::FISICA::FISICA DA MATERIA CONDENSADA
description This thesis aims to study heterostructures and devices that play a fundamental role in modern nanoelectronic technologies, focusing on group III-V semiconductor materials, especially arsenide-based systems, for photodetection applications. The area under discussion deals mainly with phenomena related to the effects of quantum confinement of the charge carrier energetic states that arise when the dimensionality is reduced. It is also discussed the macroscopic implications of this confinement, mainly on the optical and transport properties of the studied heterostructures. This work will address the effects of heterostructures with quantum wells and the influence of introducing quantum dots within their architecture. Beginning with polarization-resolved photoluminescence in pure GaAs quantum wells to get a first and better understanding of the properties of this basic system, especially its excitonic complexes. The results show excitons, biexcitons and trions emissions tuned by temperature, excitation power and external magnetic fields. Excitons and biexcitons show essential differences in their dependence on the external field. While the Zeeman splitting of biexcitons is monotonically dependent on the magnetic field, with a nearly constant g-factor, the behavior of the exciton energy division is not monotonous, involving a signal inversion as a function of the magnetic field. Remarkably, a trion resonance emergence in a finite magnetic field appears at low power excitation and sigma+ polarization. The non-trivial dependence of the energy levels with the external magnetic field, together with the particular polarization trion emission, denotes an intricate exciton and trion dynamics, which a set of coupled rate equations can describe. The theoretical approach used shows that a rapid spin-flip process could lead to an asymmetric spin emission and contrasting spin dynamics of the exciton complexes induced by their charge. Once the basic system has been developed and studied, the ideas and concepts in systems with more potential technological applications are related. In this context, one of the most widely investigated semiconductor devices is the resonant tunneling diode, not only because it performs optoelectronic responses strongly dependent on external parameters such as voltage, incident light and temperature, also due to the vast physical phenomena that it allows to address and study. Since excitation, accumulation, and charge transport control are the operating parameters and responsiveness of the device, it is critical to study how these three processes are intertwined. Here, the electroluminescence of these diodes has been used to investigate the dynamics and charge carrier accumulation through the combination of magneto-electroluminescence and magnetotransport measurements. Magneto-electroluminescence results shed light on blind spots where magnetotransport media are no longer effective and enabling the assessment of intrinsic charge carrier transport processes without the need to illuminate the sample. Finally, a resonant tunneling diode with an integrated InGaAs quantum dot layer is studied, seeking the benefit derived from the main characteristic of this type of diode to carry out photodetection; the sensitivity of the tunneling current to changes in the local electrostatic potential. In principle, this could lead to the detection of individual photons, i.e., photon numerical resolution. Transport, photocurrent and electroluminescence spectroscopy results reveal that the accumulation of charge carriers is maintained by the quantum dots, demonstrating that the proposed structure is susceptible to capturing individual photoexcited holes. A theoretical explanation is proposed, where the product of different voltage-dependent functions defines how the accumulation of charge carriers induced the voltage change and aims to quantify the single-photon detection process.
publishDate 2021
dc.date.accessioned.fl_str_mv 2021-10-22T18:54:57Z
dc.date.available.fl_str_mv 2021-10-22T18:54:57Z
dc.date.issued.fl_str_mv 2021-07-22
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv NARANJO LOPEZ, Andrea. Carrier dynamics of low-dimensional semiconductors: from quantum wells and quantum dots to resonant tunneling devices. 2021. Tese (Doutorado em Física) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/15040.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/20.500.14289/15040
identifier_str_mv NARANJO LOPEZ, Andrea. Carrier dynamics of low-dimensional semiconductors: from quantum wells and quantum dots to resonant tunneling devices. 2021. Tese (Doutorado em Física) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/15040.
url https://repositorio.ufscar.br/handle/20.500.14289/15040
dc.language.iso.fl_str_mv eng
language eng
dc.relation.authority.fl_str_mv 4ee30d70-e6cf-40ab-bb84-b9a783a8105d
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Física - PPGF
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstreams/a9c57018-60f1-4d2c-9a77-b0a5e27f4c68/download
https://repositorio.ufscar.br/bitstreams/c749416d-3fb4-4582-af56-7a1daba14879/download
https://repositorio.ufscar.br/bitstreams/3d16f72f-f42e-46f0-bb95-81a0b73cfe98/download
https://repositorio.ufscar.br/bitstreams/325655ee-1987-4565-a953-5fe5ed9e02e0/download
https://repositorio.ufscar.br/bitstreams/b3fb1531-5ffe-4f2e-bc95-f12d59e53547/download
https://repositorio.ufscar.br/bitstreams/f93f850b-b4ed-45b0-831d-3c8163da9f7c/download
https://repositorio.ufscar.br/bitstreams/5e4f9769-7af8-4282-aa97-cb6e1e286230/download
bitstream.checksum.fl_str_mv e39d27027a6cc9cb039ad269a5db8e34
e39ebe4f5dd907e2fe3558e484d4626e
3675e932f1e4237def3e9db7b5ac2e2e
017933137e974b67361a4d0dbc6695cb
3999c31bcb61eaae644c21fc6742bb5c
35861103054b66d51750370f55311857
b527a1ee8a093d6662bc23cf4261674d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv repositorio.sibi@ufscar.br
_version_ 1851688935257800704