Optimal quantum control applied to quantum dots

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Ruiz, Carlos Mario Rivera
Orientador(a): Castelano, Leonardo Kleber lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Física - PPGF
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/12179
Resumo: In the present study, we review the one-qubit dynamics and we offer a new unifying interpretation of the Landau-Zenner and the Rabi dynamics, by indicating the physical elements responsible for the manifestation of one phenomenon or the other, without the need to define them as separate phenomena. Furthermore, we demonstrate the possibility of electrically implementing quantum gates with high fidelity in two different platforms of quantum dots, with the assistance of the two-point boundary-value quantum control paradigm (TBQCP). In the first platform consisting of a double quantum dot (DQD) embedded in a nanowire, we optimized single qubit pulses corresponding to three quantum gates assuring a fidelity for every gate higher than 0,99. Also we compare the dynamical efficiency of the optimized pulses via the TBQCP method, respect to the other dynamical mechanisms (Rabi and Landau-Zener); and we found that TBQCP can provide pulses that can perform tasks in shorter times. For the second platform consisting of an electrostatical DQD, we implement the quantum permutation algorithm (QPA), which requires the quantum superposition of states with well-defined relative phases. Because of the necessity of using at least a three level system in this algorithm, we use hybrid qubits instead of spin qubits. In order to find the optimal AC electric fields that implement the required quantum gates, we apply the TBQCP method. By employing such method, we were able to determine optimal electric pulses that perform the quantum gates with high fidelity and in times faster than decoherence and relaxation time. Our results demonstrate the possibility of achieving all-electrical universal quantum gates in DQDs by means of optimal quantum control.
id SCAR_f16d097dcd5e28f6af6415789f2647aa
oai_identifier_str oai:repositorio.ufscar.br:20.500.14289/12179
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str
spelling Ruiz, Carlos Mario RiveraCastelano, Leonardo Kleberhttp://lattes.cnpq.br/1397190485811267http://lattes.cnpq.br/171331638840537052cea6d6-06d5-482e-b77f-ea6a3c3a199a2020-01-28T18:25:51Z2020-01-28T18:25:51Z2019-10-03RUIZ, Carlos Mario Rivera. Optimal quantum control applied to quantum dots. 2019. Tese (Doutorado em Física) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/12179.https://repositorio.ufscar.br/handle/20.500.14289/12179In the present study, we review the one-qubit dynamics and we offer a new unifying interpretation of the Landau-Zenner and the Rabi dynamics, by indicating the physical elements responsible for the manifestation of one phenomenon or the other, without the need to define them as separate phenomena. Furthermore, we demonstrate the possibility of electrically implementing quantum gates with high fidelity in two different platforms of quantum dots, with the assistance of the two-point boundary-value quantum control paradigm (TBQCP). In the first platform consisting of a double quantum dot (DQD) embedded in a nanowire, we optimized single qubit pulses corresponding to three quantum gates assuring a fidelity for every gate higher than 0,99. Also we compare the dynamical efficiency of the optimized pulses via the TBQCP method, respect to the other dynamical mechanisms (Rabi and Landau-Zener); and we found that TBQCP can provide pulses that can perform tasks in shorter times. For the second platform consisting of an electrostatical DQD, we implement the quantum permutation algorithm (QPA), which requires the quantum superposition of states with well-defined relative phases. Because of the necessity of using at least a three level system in this algorithm, we use hybrid qubits instead of spin qubits. In order to find the optimal AC electric fields that implement the required quantum gates, we apply the TBQCP method. By employing such method, we were able to determine optimal electric pulses that perform the quantum gates with high fidelity and in times faster than decoherence and relaxation time. Our results demonstrate the possibility of achieving all-electrical universal quantum gates in DQDs by means of optimal quantum control.Neste trabalho, revisamos a dinâmica de um-qubit e oferecemos uma interpretação unificadora das dinâmicas de Landau-Zener e de Rabi, indicando os elementos físicos responsáveis pela manifestação de um fenômeno ou de outro, sem a necessidade de defini-los como fenômenos separados. Além disso, demonstramos a possibilidade de implementar portas quânticas de alta fidelidade em duas plataformas diferentes de pontos quânticos, com a assistência do método numérico da teoria de controle ótimo quântico “two-point boundary-value quantum control paradigm ” (TBQCP). Na primeira plataforma que consiste de um ponto quântico duplo (DQD) incorporado em um nanofio, otimizamos pulsos elétricos correspondentes a três portas quânticas de um-qubit com fidelidade maior que 0,99. Também comparamos a eficiência da dinâmica com o pulso otimizado obtida através do TBQCP em relação aos outros mecanismos dinâmicos (Rabi e Landau-Zener); e descobrimos que o TBQCP pode fornecer pulsos capazes de executar tarefas em tempos mais curtos. Para a segunda plataforma que consiste de um DQD eletrostático, implementamos o algoritmo de permutação quântica (QPA), o que requer a superposição quântica de estados com fases relativas bem definidas. Devido à necessidade de usar pelo menos um sistema de três níveis nesse algoritmo, usamos qubits híbridos em vez de spin qubits. Para encontrar os campos elétricos AC ideais que implementam as portas quânticas necessárias, aplicamos o método TBQCP. Empregando esse método, fomos capazes de determinar pulsos elétricos ideais que executam as portas quânticas com uma alta fidelidade e em tempos mais rápidos do que os tempos de decoerência e relaxamento. Os nossos resultados demonstram a possibilidade de realizar portas quânticas universais totalmente elétricas em DQDs por meio do controle ótimo quântico.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPES: código de financiamento - 001engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Física - PPGFUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessControle quântico ótimoInformação quânticaPontos quânticosOptimal quantum controlQuantum informationQuantum dotsCIENCIAS EXATAS E DA TERRA::FISICA::FISICA DA MATERIA CONDENSADA::ESTADOS ELETRONICOSOptimal quantum control applied to quantum dotsControle ótimo quântico aplicado em pontos quânticosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisc3b1d75e-17c0-4b65-a89e-f13cf7c7cf16reponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTese_CarlosRivera.pdfTese_CarlosRivera.pdfapplication/pdf3151291https://repositorio.ufscar.br/bitstreams/2dbbaabb-e9c2-4e82-888a-0b73513b627b/download5f76c19c7da6abd641b3e7055c874be0MD54trueAnonymousREADautorizacao.pdfautorizacao.pdfapplication/pdf126499https://repositorio.ufscar.br/bitstreams/ed40b720-d462-46cb-9eee-efa853b8195d/download9283faffbed8baed1506e58b6a392ea7MD52falseAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstreams/9335e7b0-eb1c-4bda-bc21-8a46e6744d7f/downloade39d27027a6cc9cb039ad269a5db8e34MD55falseAnonymousREADTEXTTese_CarlosRivera.pdf.txtTese_CarlosRivera.pdf.txtExtracted texttext/plain188423https://repositorio.ufscar.br/bitstreams/152e5c76-e13f-49c8-9d27-45c2558a461d/download37991a7412f0753555f6da3eb5375d8eMD510falseAnonymousREADautorizacao.pdf.txtautorizacao.pdf.txtExtracted texttext/plain1https://repositorio.ufscar.br/bitstreams/2f4fc248-6831-40f9-8e89-8930c256ebbc/download68b329da9893e34099c7d8ad5cb9c940MD512falseAnonymousREADTHUMBNAILTese_CarlosRivera.pdf.jpgTese_CarlosRivera.pdf.jpgIM Thumbnailimage/jpeg5515https://repositorio.ufscar.br/bitstreams/1ff1ffca-b071-49a8-a97d-17452cf42fd2/downloaded6c017ba6e674aa9b6238cc3fb35411MD511falseAnonymousREADautorizacao.pdf.jpgautorizacao.pdf.jpgIM Thumbnailimage/jpeg12152https://repositorio.ufscar.br/bitstreams/ef483c83-17ca-47f6-a173-88008adc2fb3/downloada4db237e53b0c613867ce9a1cd7c3bf9MD513falseAnonymousREAD20.500.14289/121792025-02-05 19:22:13.215http://creativecommons.org/licenses/by-nc-nd/3.0/br/Attribution-NonCommercial-NoDerivs 3.0 Brazilopen.accessoai:repositorio.ufscar.br:20.500.14289/12179https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T22:22:13Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.eng.fl_str_mv Optimal quantum control applied to quantum dots
dc.title.alternative.por.fl_str_mv Controle ótimo quântico aplicado em pontos quânticos
title Optimal quantum control applied to quantum dots
spellingShingle Optimal quantum control applied to quantum dots
Ruiz, Carlos Mario Rivera
Controle quântico ótimo
Informação quântica
Pontos quânticos
Optimal quantum control
Quantum information
Quantum dots
CIENCIAS EXATAS E DA TERRA::FISICA::FISICA DA MATERIA CONDENSADA::ESTADOS ELETRONICOS
title_short Optimal quantum control applied to quantum dots
title_full Optimal quantum control applied to quantum dots
title_fullStr Optimal quantum control applied to quantum dots
title_full_unstemmed Optimal quantum control applied to quantum dots
title_sort Optimal quantum control applied to quantum dots
author Ruiz, Carlos Mario Rivera
author_facet Ruiz, Carlos Mario Rivera
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/1713316388405370
dc.contributor.author.fl_str_mv Ruiz, Carlos Mario Rivera
dc.contributor.advisor1.fl_str_mv Castelano, Leonardo Kleber
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/1397190485811267
dc.contributor.authorID.fl_str_mv 52cea6d6-06d5-482e-b77f-ea6a3c3a199a
contributor_str_mv Castelano, Leonardo Kleber
dc.subject.por.fl_str_mv Controle quântico ótimo
Informação quântica
Pontos quânticos
topic Controle quântico ótimo
Informação quântica
Pontos quânticos
Optimal quantum control
Quantum information
Quantum dots
CIENCIAS EXATAS E DA TERRA::FISICA::FISICA DA MATERIA CONDENSADA::ESTADOS ELETRONICOS
dc.subject.eng.fl_str_mv Optimal quantum control
Quantum information
Quantum dots
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::FISICA::FISICA DA MATERIA CONDENSADA::ESTADOS ELETRONICOS
description In the present study, we review the one-qubit dynamics and we offer a new unifying interpretation of the Landau-Zenner and the Rabi dynamics, by indicating the physical elements responsible for the manifestation of one phenomenon or the other, without the need to define them as separate phenomena. Furthermore, we demonstrate the possibility of electrically implementing quantum gates with high fidelity in two different platforms of quantum dots, with the assistance of the two-point boundary-value quantum control paradigm (TBQCP). In the first platform consisting of a double quantum dot (DQD) embedded in a nanowire, we optimized single qubit pulses corresponding to three quantum gates assuring a fidelity for every gate higher than 0,99. Also we compare the dynamical efficiency of the optimized pulses via the TBQCP method, respect to the other dynamical mechanisms (Rabi and Landau-Zener); and we found that TBQCP can provide pulses that can perform tasks in shorter times. For the second platform consisting of an electrostatical DQD, we implement the quantum permutation algorithm (QPA), which requires the quantum superposition of states with well-defined relative phases. Because of the necessity of using at least a three level system in this algorithm, we use hybrid qubits instead of spin qubits. In order to find the optimal AC electric fields that implement the required quantum gates, we apply the TBQCP method. By employing such method, we were able to determine optimal electric pulses that perform the quantum gates with high fidelity and in times faster than decoherence and relaxation time. Our results demonstrate the possibility of achieving all-electrical universal quantum gates in DQDs by means of optimal quantum control.
publishDate 2019
dc.date.issued.fl_str_mv 2019-10-03
dc.date.accessioned.fl_str_mv 2020-01-28T18:25:51Z
dc.date.available.fl_str_mv 2020-01-28T18:25:51Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv RUIZ, Carlos Mario Rivera. Optimal quantum control applied to quantum dots. 2019. Tese (Doutorado em Física) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/12179.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/20.500.14289/12179
identifier_str_mv RUIZ, Carlos Mario Rivera. Optimal quantum control applied to quantum dots. 2019. Tese (Doutorado em Física) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/12179.
url https://repositorio.ufscar.br/handle/20.500.14289/12179
dc.language.iso.fl_str_mv eng
language eng
dc.relation.authority.fl_str_mv c3b1d75e-17c0-4b65-a89e-f13cf7c7cf16
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Física - PPGF
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstreams/2dbbaabb-e9c2-4e82-888a-0b73513b627b/download
https://repositorio.ufscar.br/bitstreams/ed40b720-d462-46cb-9eee-efa853b8195d/download
https://repositorio.ufscar.br/bitstreams/9335e7b0-eb1c-4bda-bc21-8a46e6744d7f/download
https://repositorio.ufscar.br/bitstreams/152e5c76-e13f-49c8-9d27-45c2558a461d/download
https://repositorio.ufscar.br/bitstreams/2f4fc248-6831-40f9-8e89-8930c256ebbc/download
https://repositorio.ufscar.br/bitstreams/1ff1ffca-b071-49a8-a97d-17452cf42fd2/download
https://repositorio.ufscar.br/bitstreams/ef483c83-17ca-47f6-a173-88008adc2fb3/download
bitstream.checksum.fl_str_mv 5f76c19c7da6abd641b3e7055c874be0
9283faffbed8baed1506e58b6a392ea7
e39d27027a6cc9cb039ad269a5db8e34
37991a7412f0753555f6da3eb5375d8e
68b329da9893e34099c7d8ad5cb9c940
ed6c017ba6e674aa9b6238cc3fb35411
a4db237e53b0c613867ce9a1cd7c3bf9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv repositorio.sibi@ufscar.br
_version_ 1851688738684403712