Efficient bayesian methods for mixture models with genetic applications
| Ano de defesa: | 2016 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de São Carlos
Câmpus São Carlos |
| Programa de Pós-Graduação: |
Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://repositorio.ufscar.br/handle/20.500.14289/8426 |
Resumo: | We propose Bayesian methods for selecting and estimating di erent types of mixture models which are widely used in Genetics and Molecular Biology. We speci cally propose data-driven selection and estimation methods for a generalized mixture model, which accommodates the usual (independent) and the rst-order (dependent) models in one framework, and QTL (quantitative trait locus) mapping models for independent and pedigree data. For clustering genes through a mixture model, we propose three nonparametric Bayesian methods: a marginal nested Dirichlet process (NDP), which is able to cluster distributions and, a predictive recursion clustering scheme (PRC) and a subset nonparametric Bayesian (SNOB) clustering algorithm for clustering big data. We analyze and compare the performance of the proposed methods and traditional procedures of selection, estimation and clustering in simulated and real data sets. The proposed methods are more exible, improve the convergence of the algorithms and provide more accurate estimates in many situations. In addition, we propose methods for predicting nonobservable QTLs genotypes and missing parents and improve the Mendelian probability of inheritance of nonfounder genotype using conditional independence structures. We also suggest applying diagnostic measures to check the goodness of t of QTL mapping models. |
| id |
SCAR_7cf69a8392ba350b7ad6181ef2154f38 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufscar.br:20.500.14289/8426 |
| network_acronym_str |
SCAR |
| network_name_str |
Repositório Institucional da UFSCAR |
| repository_id_str |
|
| spelling |
Zuanetti, Daiane AparecidaMilan, Luis Aparecidohttp://lattes.cnpq.br/7435391829973844http://lattes.cnpq.br/8352484284929824b32a2fc3-5d19-41db-9bab-08a95238ddf52017-01-17T11:47:50Z2017-01-17T11:47:50Z2016-12-14ZUANETTI, Daiane Aparecida. Efficient bayesian methods for mixture models with genetic applications. 2016. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/8426.https://repositorio.ufscar.br/handle/20.500.14289/8426We propose Bayesian methods for selecting and estimating di erent types of mixture models which are widely used in Genetics and Molecular Biology. We speci cally propose data-driven selection and estimation methods for a generalized mixture model, which accommodates the usual (independent) and the rst-order (dependent) models in one framework, and QTL (quantitative trait locus) mapping models for independent and pedigree data. For clustering genes through a mixture model, we propose three nonparametric Bayesian methods: a marginal nested Dirichlet process (NDP), which is able to cluster distributions and, a predictive recursion clustering scheme (PRC) and a subset nonparametric Bayesian (SNOB) clustering algorithm for clustering big data. We analyze and compare the performance of the proposed methods and traditional procedures of selection, estimation and clustering in simulated and real data sets. The proposed methods are more exible, improve the convergence of the algorithms and provide more accurate estimates in many situations. In addition, we propose methods for predicting nonobservable QTLs genotypes and missing parents and improve the Mendelian probability of inheritance of nonfounder genotype using conditional independence structures. We also suggest applying diagnostic measures to check the goodness of t of QTL mapping models.N os propomos métodos Bayesianos para selecionar e estimar diferentes tipos de modelos de mistura que são amplamente utilizados em Genética e Biologia Molecular. Especificamente, propomos métodos direcionados pelos dados para selecionar e estimar um modelo de mistura generalizado, que descreve o modelo de mistura usual (independente) e o de primeira ordem numa mesma estrutura, e modelos de mapeamento de QTL com dados independentes e familiares. Para agrupar genes através de modelos de mistura, nós propomos três métodos Bayesianos não-paramétricos: o processo de Dirichlet aninhado que possibilita agrupamento de distribuições e, um algoritmo preditivo recursivo e outro Bayesiano nãoparamétrico exato para agrupar dados de alta dimensão. Analisamos e comparamos o desempenho dos métodos propostos e dos procedimentos tradicionais de seleção e estimação de modelos e agrupamento de dados em conjuntos de dados simulados e reais. Os métodos propostos são mais extáveis, aprimoram a convergência dos algoritmos e apresentam estimativas mais precisas em muitas situações. Além disso, nós propomos procedimentos para predizer o genótipo não observável dos QTLs e de pais faltantes e melhorar a probabilidade Mendeliana de herança genética do genótipo dos descendentes através da estrutura de independência condicional entre os indivíduos. Também sugerimos aplicar medidas de diagnóstico para verificar a qualidade do ajuste dos modelos de mapeamento de QTLs.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)porUniversidade Federal de São CarlosCâmpus São CarlosPrograma Interinstitucional de Pós-Graduação em Estatística - PIPGEsUFSCarMixture modelsData-driven bayesian methodsNonparametric bayesian methodsQTL mappingClustering distributionsCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::ANALISE DE DADOSEfficient bayesian methods for mixture models with genetic applicationsMétodos bayesianos eficientes para modelos de mistura com aplicações em genéticainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnline60060001874dfd-bd1b-409c-81e8-3185c83eacf2info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTeseDAZ.pdfTeseDAZ.pdfapplication/pdf20535130https://repositorio.ufscar.br/bitstreams/6ce9831b-1476-4bbc-b728-f3cc5093e46c/download82585444ba6f0568a20adac88fdfc626MD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstreams/fff1ba2e-f6df-4c80-bf6f-47e39d4ded0c/downloadae0398b6f8b235e40ad82cba6c50031dMD52falseAnonymousREADTEXTTeseDAZ.pdf.txtTeseDAZ.pdf.txtExtracted texttext/plain460345https://repositorio.ufscar.br/bitstreams/b1635b78-27f8-404b-819a-30cb04c0868b/download30bbdda77557fea53dcc1ee86ae35b96MD55falseAnonymousREADTHUMBNAILTeseDAZ.pdf.jpgTeseDAZ.pdf.jpgIM Thumbnailimage/jpeg2266https://repositorio.ufscar.br/bitstreams/5a2c7bcd-601c-45fc-a77a-7b914732b32d/downloadee6b66ddbee349433340c027bf5650d0MD56falseAnonymousREAD20.500.14289/84262025-02-05 18:56:04.89Acesso abertoopen.accessoai:repositorio.ufscar.br:20.500.14289/8426https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T21:56:04Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg== |
| dc.title.eng.fl_str_mv |
Efficient bayesian methods for mixture models with genetic applications |
| dc.title.alternative.eng.fl_str_mv |
Métodos bayesianos eficientes para modelos de mistura com aplicações em genética |
| title |
Efficient bayesian methods for mixture models with genetic applications |
| spellingShingle |
Efficient bayesian methods for mixture models with genetic applications Zuanetti, Daiane Aparecida Mixture models Data-driven bayesian methods Nonparametric bayesian methods QTL mapping Clustering distributions CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::ANALISE DE DADOS |
| title_short |
Efficient bayesian methods for mixture models with genetic applications |
| title_full |
Efficient bayesian methods for mixture models with genetic applications |
| title_fullStr |
Efficient bayesian methods for mixture models with genetic applications |
| title_full_unstemmed |
Efficient bayesian methods for mixture models with genetic applications |
| title_sort |
Efficient bayesian methods for mixture models with genetic applications |
| author |
Zuanetti, Daiane Aparecida |
| author_facet |
Zuanetti, Daiane Aparecida |
| author_role |
author |
| dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/8352484284929824 |
| dc.contributor.author.fl_str_mv |
Zuanetti, Daiane Aparecida |
| dc.contributor.advisor1.fl_str_mv |
Milan, Luis Aparecido |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/7435391829973844 |
| dc.contributor.authorID.fl_str_mv |
b32a2fc3-5d19-41db-9bab-08a95238ddf5 |
| contributor_str_mv |
Milan, Luis Aparecido |
| dc.subject.eng.fl_str_mv |
Mixture models Data-driven bayesian methods Nonparametric bayesian methods QTL mapping Clustering distributions |
| topic |
Mixture models Data-driven bayesian methods Nonparametric bayesian methods QTL mapping Clustering distributions CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::ANALISE DE DADOS |
| dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::ANALISE DE DADOS |
| description |
We propose Bayesian methods for selecting and estimating di erent types of mixture models which are widely used in Genetics and Molecular Biology. We speci cally propose data-driven selection and estimation methods for a generalized mixture model, which accommodates the usual (independent) and the rst-order (dependent) models in one framework, and QTL (quantitative trait locus) mapping models for independent and pedigree data. For clustering genes through a mixture model, we propose three nonparametric Bayesian methods: a marginal nested Dirichlet process (NDP), which is able to cluster distributions and, a predictive recursion clustering scheme (PRC) and a subset nonparametric Bayesian (SNOB) clustering algorithm for clustering big data. We analyze and compare the performance of the proposed methods and traditional procedures of selection, estimation and clustering in simulated and real data sets. The proposed methods are more exible, improve the convergence of the algorithms and provide more accurate estimates in many situations. In addition, we propose methods for predicting nonobservable QTLs genotypes and missing parents and improve the Mendelian probability of inheritance of nonfounder genotype using conditional independence structures. We also suggest applying diagnostic measures to check the goodness of t of QTL mapping models. |
| publishDate |
2016 |
| dc.date.issued.fl_str_mv |
2016-12-14 |
| dc.date.accessioned.fl_str_mv |
2017-01-17T11:47:50Z |
| dc.date.available.fl_str_mv |
2017-01-17T11:47:50Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
ZUANETTI, Daiane Aparecida. Efficient bayesian methods for mixture models with genetic applications. 2016. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/8426. |
| dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/20.500.14289/8426 |
| identifier_str_mv |
ZUANETTI, Daiane Aparecida. Efficient bayesian methods for mixture models with genetic applications. 2016. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/8426. |
| url |
https://repositorio.ufscar.br/handle/20.500.14289/8426 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.confidence.fl_str_mv |
600 600 |
| dc.relation.authority.fl_str_mv |
01874dfd-bd1b-409c-81e8-3185c83eacf2 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.publisher.program.fl_str_mv |
Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs |
| dc.publisher.initials.fl_str_mv |
UFSCar |
| publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
| instname_str |
Universidade Federal de São Carlos (UFSCAR) |
| instacron_str |
UFSCAR |
| institution |
UFSCAR |
| reponame_str |
Repositório Institucional da UFSCAR |
| collection |
Repositório Institucional da UFSCAR |
| bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstreams/6ce9831b-1476-4bbc-b728-f3cc5093e46c/download https://repositorio.ufscar.br/bitstreams/fff1ba2e-f6df-4c80-bf6f-47e39d4ded0c/download https://repositorio.ufscar.br/bitstreams/b1635b78-27f8-404b-819a-30cb04c0868b/download https://repositorio.ufscar.br/bitstreams/5a2c7bcd-601c-45fc-a77a-7b914732b32d/download |
| bitstream.checksum.fl_str_mv |
82585444ba6f0568a20adac88fdfc626 ae0398b6f8b235e40ad82cba6c50031d 30bbdda77557fea53dcc1ee86ae35b96 ee6b66ddbee349433340c027bf5650d0 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
| repository.mail.fl_str_mv |
repositorio.sibi@ufscar.br |
| _version_ |
1851688942984757248 |