A Bayesian skew mixture item response model
| Ano de defesa: | 2015 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de Minas Gerais
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://hdl.handle.net/1843/ICED-9WFGSE |
Resumo: | Under the Item Response Theory, the two most common link functions used to model dichotomous data are the symmetric probit and logit. However, some authors have emphasized that these symmetric links do not always provide the best t for some data sets. To overcome this issue, asymmetric links have been proposed. This work aims at introducing a exible Item Response Model able to accommodate both symmetric and asymmetric link. The c.d.f. of a centered skew normal distribution is assumed as the link function and, additionally, we consider a nite mixture of Beta distributions and a point mass distribution at zero to describe the uncertainty about the skewness parameter, so not all items need to be assumed asymmetric a priori. Therefore, the proposed model embraces symmetric and asymmetric normal models in one also performing an intrinsic model selection. We o er the full condition distribution of ability, discrimination and dificulty parameters. We also introduce efficient algorithms to sample from the posterior distributions. |
| id |
UFMG_e4c8d180c773a4311abe1a4e8547f53b |
|---|---|
| oai_identifier_str |
oai:repositorio.ufmg.br:1843/ICED-9WFGSE |
| network_acronym_str |
UFMG |
| network_name_str |
Repositório Institucional da UFMG |
| repository_id_str |
|
| spelling |
A Bayesian skew mixture item response modelEstatísticaTeoria bayesiana de decisão estatisticaProbabilidadesEstatísticaUnder the Item Response Theory, the two most common link functions used to model dichotomous data are the symmetric probit and logit. However, some authors have emphasized that these symmetric links do not always provide the best t for some data sets. To overcome this issue, asymmetric links have been proposed. This work aims at introducing a exible Item Response Model able to accommodate both symmetric and asymmetric link. The c.d.f. of a centered skew normal distribution is assumed as the link function and, additionally, we consider a nite mixture of Beta distributions and a point mass distribution at zero to describe the uncertainty about the skewness parameter, so not all items need to be assumed asymmetric a priori. Therefore, the proposed model embraces symmetric and asymmetric normal models in one also performing an intrinsic model selection. We o er the full condition distribution of ability, discrimination and dificulty parameters. We also introduce efficient algorithms to sample from the posterior distributions.Universidade Federal de Minas Gerais2019-08-13T09:50:10Z2025-09-08T22:51:12Z2019-08-13T09:50:10Z2015-03-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/1843/ICED-9WFGSEJuliane Venturelli Silva Limainfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2025-09-08T22:51:12Zoai:repositorio.ufmg.br:1843/ICED-9WFGSERepositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2025-09-08T22:51:12Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false |
| dc.title.none.fl_str_mv |
A Bayesian skew mixture item response model |
| title |
A Bayesian skew mixture item response model |
| spellingShingle |
A Bayesian skew mixture item response model Juliane Venturelli Silva Lima Estatística Teoria bayesiana de decisão estatistica Probabilidades Estatística |
| title_short |
A Bayesian skew mixture item response model |
| title_full |
A Bayesian skew mixture item response model |
| title_fullStr |
A Bayesian skew mixture item response model |
| title_full_unstemmed |
A Bayesian skew mixture item response model |
| title_sort |
A Bayesian skew mixture item response model |
| author |
Juliane Venturelli Silva Lima |
| author_facet |
Juliane Venturelli Silva Lima |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Juliane Venturelli Silva Lima |
| dc.subject.por.fl_str_mv |
Estatística Teoria bayesiana de decisão estatistica Probabilidades Estatística |
| topic |
Estatística Teoria bayesiana de decisão estatistica Probabilidades Estatística |
| description |
Under the Item Response Theory, the two most common link functions used to model dichotomous data are the symmetric probit and logit. However, some authors have emphasized that these symmetric links do not always provide the best t for some data sets. To overcome this issue, asymmetric links have been proposed. This work aims at introducing a exible Item Response Model able to accommodate both symmetric and asymmetric link. The c.d.f. of a centered skew normal distribution is assumed as the link function and, additionally, we consider a nite mixture of Beta distributions and a point mass distribution at zero to describe the uncertainty about the skewness parameter, so not all items need to be assumed asymmetric a priori. Therefore, the proposed model embraces symmetric and asymmetric normal models in one also performing an intrinsic model selection. We o er the full condition distribution of ability, discrimination and dificulty parameters. We also introduce efficient algorithms to sample from the posterior distributions. |
| publishDate |
2015 |
| dc.date.none.fl_str_mv |
2015-03-02 2019-08-13T09:50:10Z 2019-08-13T09:50:10Z 2025-09-08T22:51:12Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1843/ICED-9WFGSE |
| url |
https://hdl.handle.net/1843/ICED-9WFGSE |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais |
| publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFMG instname:Universidade Federal de Minas Gerais (UFMG) instacron:UFMG |
| instname_str |
Universidade Federal de Minas Gerais (UFMG) |
| instacron_str |
UFMG |
| institution |
UFMG |
| reponame_str |
Repositório Institucional da UFMG |
| collection |
Repositório Institucional da UFMG |
| repository.name.fl_str_mv |
Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG) |
| repository.mail.fl_str_mv |
repositorio@ufmg.br |
| _version_ |
1856414041331728384 |