Exportação concluída — 

A Bayesian skew mixture item response model

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Juliane Venturelli Silva Lima
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://hdl.handle.net/1843/ICED-9WFGSE
Resumo: Under the Item Response Theory, the two most common link functions used to model dichotomous data are the symmetric probit and logit. However, some authors have emphasized that these symmetric links do not always provide the best t for some data sets. To overcome this issue, asymmetric links have been proposed. This work aims at introducing a exible Item Response Model able to accommodate both symmetric and asymmetric link. The c.d.f. of a centered skew normal distribution is assumed as the link function and, additionally, we consider a nite mixture of Beta distributions and a point mass distribution at zero to describe the uncertainty about the skewness parameter, so not all items need to be assumed asymmetric a priori. Therefore, the proposed model embraces symmetric and asymmetric normal models in one also performing an intrinsic model selection. We o er the full condition distribution of ability, discrimination and dificulty parameters. We also introduce efficient algorithms to sample from the posterior distributions.
id UFMG_e4c8d180c773a4311abe1a4e8547f53b
oai_identifier_str oai:repositorio.ufmg.br:1843/ICED-9WFGSE
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling A Bayesian skew mixture item response modelEstatísticaTeoria bayesiana de decisão estatisticaProbabilidadesEstatísticaUnder the Item Response Theory, the two most common link functions used to model dichotomous data are the symmetric probit and logit. However, some authors have emphasized that these symmetric links do not always provide the best t for some data sets. To overcome this issue, asymmetric links have been proposed. This work aims at introducing a exible Item Response Model able to accommodate both symmetric and asymmetric link. The c.d.f. of a centered skew normal distribution is assumed as the link function and, additionally, we consider a nite mixture of Beta distributions and a point mass distribution at zero to describe the uncertainty about the skewness parameter, so not all items need to be assumed asymmetric a priori. Therefore, the proposed model embraces symmetric and asymmetric normal models in one also performing an intrinsic model selection. We o er the full condition distribution of ability, discrimination and dificulty parameters. We also introduce efficient algorithms to sample from the posterior distributions.Universidade Federal de Minas Gerais2019-08-13T09:50:10Z2025-09-08T22:51:12Z2019-08-13T09:50:10Z2015-03-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/1843/ICED-9WFGSEJuliane Venturelli Silva Limainfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2025-09-08T22:51:12Zoai:repositorio.ufmg.br:1843/ICED-9WFGSERepositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2025-09-08T22:51:12Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.none.fl_str_mv A Bayesian skew mixture item response model
title A Bayesian skew mixture item response model
spellingShingle A Bayesian skew mixture item response model
Juliane Venturelli Silva Lima
Estatística
Teoria bayesiana de decisão estatistica
Probabilidades
Estatística
title_short A Bayesian skew mixture item response model
title_full A Bayesian skew mixture item response model
title_fullStr A Bayesian skew mixture item response model
title_full_unstemmed A Bayesian skew mixture item response model
title_sort A Bayesian skew mixture item response model
author Juliane Venturelli Silva Lima
author_facet Juliane Venturelli Silva Lima
author_role author
dc.contributor.author.fl_str_mv Juliane Venturelli Silva Lima
dc.subject.por.fl_str_mv Estatística
Teoria bayesiana de decisão estatistica
Probabilidades
Estatística
topic Estatística
Teoria bayesiana de decisão estatistica
Probabilidades
Estatística
description Under the Item Response Theory, the two most common link functions used to model dichotomous data are the symmetric probit and logit. However, some authors have emphasized that these symmetric links do not always provide the best t for some data sets. To overcome this issue, asymmetric links have been proposed. This work aims at introducing a exible Item Response Model able to accommodate both symmetric and asymmetric link. The c.d.f. of a centered skew normal distribution is assumed as the link function and, additionally, we consider a nite mixture of Beta distributions and a point mass distribution at zero to describe the uncertainty about the skewness parameter, so not all items need to be assumed asymmetric a priori. Therefore, the proposed model embraces symmetric and asymmetric normal models in one also performing an intrinsic model selection. We o er the full condition distribution of ability, discrimination and dificulty parameters. We also introduce efficient algorithms to sample from the posterior distributions.
publishDate 2015
dc.date.none.fl_str_mv 2015-03-02
2019-08-13T09:50:10Z
2019-08-13T09:50:10Z
2025-09-08T22:51:12Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1843/ICED-9WFGSE
url https://hdl.handle.net/1843/ICED-9WFGSE
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv repositorio@ufmg.br
_version_ 1856414041331728384