Two-dimensional transition metal halides for optical applications: impact of excitons

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Regis, Natan Moreira
Orientador(a): Lima, Matheus Paes lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Física - PPGF
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/20908
Resumo: Two-dimensional materials have experienced rapid growth since the first exfoliation of graphene in 2004, which is an atomically thin sheet of carbon atoms exfoliated from graphite. Despite several unprecedented properties of graphene, induced by quantum confinement, it lacks a band gap that limits some optoelectronic applications. however, graphene motivates a new research field of two-dimensional materials, and their potential compositions and structures, ranging from insulators to semiconductors to conductors. The wide range of conductive behavior within the quantum confinement gives rise to distinct behaviors, including a large exciton binding energy. Excitons are quasi-particles formed by an electron-hole pair that interact through Coulomb attraction, a phenomenon present in semiconductors but more notable in low-dimensional materials due to quantum confinement, which changes the dielectric environment. However, single-particle theoretical methods, such as ground-state density functional theory, do not describe excitons because it is a many-body phenomenon. Thus, a complete characterization of the optical properties of two-dimensional materials requires going beyond a single-particle perspective. Motivated by the accomplishment of several two-dimensional materials and halide perovskites, this work explores a new class of two-dimensional materials, namely, transition metal halide (TMHs) monolayers. We initially selected potential TMHs for optoelectronics in the Computational 2D Materials Database (C2DB) and subsequently analyzed the structural, electronic, optical and excitonic properties using state-of-the-art theoretical methods to study materials such as Density Funcional Theory (DFT) calculations including relativistic and bandgap correction and the evaluation of optical properties including excitonic effect within Tight Binding (TB) Hamiltonian and by the solution of Bethe-Salpeter equation (BSE). Our calculations show that the equilibrium structure calculated by C2DB agrees with those obtained here and with other theoretical works. However, electronic properties exhibit important deviations that are not homogeneous among systems. For iinstance, we observed deviations in the bandgap values up to 17 % when considering relativistic correction and for the corrected bandgap value computed applying the scissors operator methodology. We also computed optical and excitonic properties by solving the Bethe-Salpeter equations, showing isotropic and non-isotropic light absorption among the systems. The inclusion of excitonic effects decreased the maximum light absorption when compared to the absorption coefficient without these effects and also changes in the energy region of spectra. The compositions demonstrated considerable binding energy, highlighting the importance of studying this quasi-particle in theoretical calculations. The possible heterojunctions are hardly influenced by excitonic effects; thus, evaluating possible heterojunctions must take into account exctions. Finally, we found evidence of an excitonic insulator among the systems, where the excited state are preferable than the semiconducting ground state.
id SCAR_835308eb6e163c7ff4ddd84cb57447bf
oai_identifier_str oai:repositorio.ufscar.br:20.500.14289/20908
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str
spelling Regis, Natan MoreiraLima, Matheus Paeshttp://lattes.cnpq.br/1835846543912999http://lattes.cnpq.br/1280246673704789https://orcid.org/0000-0003-1097-3036https://orcid.org/0000-0001-5389-76492024-10-30T20:31:49Z2024-10-30T20:31:49Z2024-08-01REGIS, Natan Moreira. Two-dimensional transition metal halides for optical applications: impact of excitons. 2024. Dissertação (Mestrado em Física) – Universidade Federal de São Carlos, São Carlos, 2024. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/20908.https://repositorio.ufscar.br/handle/20.500.14289/20908Two-dimensional materials have experienced rapid growth since the first exfoliation of graphene in 2004, which is an atomically thin sheet of carbon atoms exfoliated from graphite. Despite several unprecedented properties of graphene, induced by quantum confinement, it lacks a band gap that limits some optoelectronic applications. however, graphene motivates a new research field of two-dimensional materials, and their potential compositions and structures, ranging from insulators to semiconductors to conductors. The wide range of conductive behavior within the quantum confinement gives rise to distinct behaviors, including a large exciton binding energy. Excitons are quasi-particles formed by an electron-hole pair that interact through Coulomb attraction, a phenomenon present in semiconductors but more notable in low-dimensional materials due to quantum confinement, which changes the dielectric environment. However, single-particle theoretical methods, such as ground-state density functional theory, do not describe excitons because it is a many-body phenomenon. Thus, a complete characterization of the optical properties of two-dimensional materials requires going beyond a single-particle perspective. Motivated by the accomplishment of several two-dimensional materials and halide perovskites, this work explores a new class of two-dimensional materials, namely, transition metal halide (TMHs) monolayers. We initially selected potential TMHs for optoelectronics in the Computational 2D Materials Database (C2DB) and subsequently analyzed the structural, electronic, optical and excitonic properties using state-of-the-art theoretical methods to study materials such as Density Funcional Theory (DFT) calculations including relativistic and bandgap correction and the evaluation of optical properties including excitonic effect within Tight Binding (TB) Hamiltonian and by the solution of Bethe-Salpeter equation (BSE). Our calculations show that the equilibrium structure calculated by C2DB agrees with those obtained here and with other theoretical works. However, electronic properties exhibit important deviations that are not homogeneous among systems. For iinstance, we observed deviations in the bandgap values up to 17 % when considering relativistic correction and for the corrected bandgap value computed applying the scissors operator methodology. We also computed optical and excitonic properties by solving the Bethe-Salpeter equations, showing isotropic and non-isotropic light absorption among the systems. The inclusion of excitonic effects decreased the maximum light absorption when compared to the absorption coefficient without these effects and also changes in the energy region of spectra. The compositions demonstrated considerable binding energy, highlighting the importance of studying this quasi-particle in theoretical calculations. The possible heterojunctions are hardly influenced by excitonic effects; thus, evaluating possible heterojunctions must take into account exctions. Finally, we found evidence of an excitonic insulator among the systems, where the excited state are preferable than the semiconducting ground state.Os materiais bidimensionais têm experimentado um rápido crescimento desde a primeira esfoliação do grafeno em 2004, que é uma folha atomicamente fina de átomos de carbono esfoliada do grafite. Apesar de várias propriedades sem precedentes do grafeno, induzidas pelo confinamento quântico, ele carece de um gap de banda, oque limita algumas aplicações optoeletrônicas. porém o grafeno motivou um novo campo de pesquisa de materiais bidimensionais, com suas potenciais composições e estruturas, variando de isolantes a semicondutores e condutores. A ampla gama de comportamento condutivo dentro do confinamento quântico dá origem a comportamentos distintos, incluindo uma grande energia de ligação do exciton. Excitons são quasi-partı́culas formadas por um par elétron-buraco que interage através da atração de Coulomb, um fenômeno presente em semicondutores, mas mais notável em materiais de baixa dimensão devido ao confinamento quântico, que altera o ambiente dielétrico. No entanto, métodos teóricos de partı́culas individuais, como a teoria do funcional da densidade no estado fundamental, não descrevem excitons porque é um fenômeno de muitos corpos. Assim, uma caracterização completa das propriedades ópticas dos materiais bidimensionais requer ir além de uma perspectiva de partı́culas individuais. Motivado pelas conquistas de vários materiais bidimensionais e perovskitas halogenadas, este trabalho explora uma nova classe de materiais bidimensionais, a saber, monocamadas de haletos de metais de transição (TMHs). Inicialmente, selecionamos TMHs potenciais para optoeletrônica no Banco de Dados Computacional de Materiais 2D (C2DB) e, subsequentemente, analisamos as propriedades estruturais, eletrônicas, ópticas e excitônicas usando métodos teóricos de ponta como cálculos de Teoria do Funcional da Densidade (DFT) incluindo correções relativı́sticas e de gap de banda, e a avaliação de propriedades ópticas incluindo efeitos excitônicos dentro de Hamiltonianos de Ligação Forte (TB) e pela solução da equação de Bethe-Salpeter (BSE) para estudar esses materiais. Nossos cálculos mostram que a estrutura de equilı́brio calculada pelo C2DB concorda com os cálculos realizados aqui. No entanto, as propriedades eletrônicas exibem desvios importantes que não são homogêneos entre os sistemas Por exemplo, observamos desvios nos valores de gap de banda de até 17 % ao considerar correções relativı́sticas e para o valor corrigido do gap de banda calculado aplicando a metodologia do operador tesoura. Também calculamos propriedades ópticas e excitônicas resolvendo as equações de Bethe-Salpeter, mostrando absorção de luz isotrópica e anisotrópica entre os sistemas. A inclusão de efeitos excitônicos diminuiu a máxima absorção de luz quando comparada ao coeficiente de absorção sem esses efeitos e também alterou a região de energia dos espectros de absorção máxima. As composições demonstraram considerável energia de ligação, destacando a importância de estudar esta quasi-partı́cula em cálculos teóricos. As possı́veis heterojunções são fortemente influenciadas pelos efeitos excitônicos; portanto, a avaliação de possı́veis heterojunções deve levar em consideração os excitons. Finalmente, encontramos evidências de um isolante excitônico entre os sistemas, onde os estados excitados são preferı́veis ao estado fundamental semicondutor.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)130902/2022-5engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Física - PPGFUFSCarAttribution-ShareAlike 3.0 Brazilhttp://creativecommons.org/licenses/by-sa/3.0/br/info:eu-repo/semantics/openAccessTransition Metal HalidesTwo DimensionalMonolayerExcitonsCIENCIAS EXATAS E DA TERRA::FISICA::FISICA DA MATERIA CONDENSADA::SUPERFICIES E INTERFACES; PELICULAS E FILAMENTOSTwo-dimensional transition metal halides for optical applications: impact of excitonsHaletos de metais de transição bi-dimensionais para aplicações óticas: impacto dos éxcitonsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARTEXTnatan_moreira_regis_master_dissertation_corrigida.pdf.txtnatan_moreira_regis_master_dissertation_corrigida.pdf.txtExtracted texttext/plain101874https://repositorio.ufscar.br/bitstreams/27f8a455-3813-42b7-b8c8-cd5d7b8cd8bf/download3204962046b80a2b21c8f67fc97b1bdaMD53falseAnonymousREADTHUMBNAILnatan_moreira_regis_master_dissertation_corrigida.pdf.jpgnatan_moreira_regis_master_dissertation_corrigida.pdf.jpgGenerated Thumbnailimage/jpeg4025https://repositorio.ufscar.br/bitstreams/5b75f02b-a7dc-41d2-be5a-f76ce15e2180/download24962d866ec221e5270ccd892e8abee6MD54falseAnonymousREADORIGINALnatan_moreira_regis_master_dissertation_corrigida.pdfnatan_moreira_regis_master_dissertation_corrigida.pdfDissertação de Mestadoapplication/pdf11734356https://repositorio.ufscar.br/bitstreams/e327d723-c679-44fb-871c-f50b97a2320f/download2f9f7ee5aaa3a7e1422c41ffc2800c5fMD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81030https://repositorio.ufscar.br/bitstreams/164b359e-1d6a-44ee-bcfd-2286f3861b39/downloadc6e5ca9ee4112329286834c9257d9d4cMD52falseAnonymousREAD20.500.14289/209082025-02-06 03:43:27.422http://creativecommons.org/licenses/by-sa/3.0/br/Attribution-ShareAlike 3.0 Brazilopen.accessoai:repositorio.ufscar.br:20.500.14289/20908https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-06T06:43:27Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.eng.fl_str_mv Two-dimensional transition metal halides for optical applications: impact of excitons
dc.title.alternative.por.fl_str_mv Haletos de metais de transição bi-dimensionais para aplicações óticas: impacto dos éxcitons
title Two-dimensional transition metal halides for optical applications: impact of excitons
spellingShingle Two-dimensional transition metal halides for optical applications: impact of excitons
Regis, Natan Moreira
Transition Metal Halides
Two Dimensional
Monolayer
Excitons
CIENCIAS EXATAS E DA TERRA::FISICA::FISICA DA MATERIA CONDENSADA::SUPERFICIES E INTERFACES; PELICULAS E FILAMENTOS
title_short Two-dimensional transition metal halides for optical applications: impact of excitons
title_full Two-dimensional transition metal halides for optical applications: impact of excitons
title_fullStr Two-dimensional transition metal halides for optical applications: impact of excitons
title_full_unstemmed Two-dimensional transition metal halides for optical applications: impact of excitons
title_sort Two-dimensional transition metal halides for optical applications: impact of excitons
author Regis, Natan Moreira
author_facet Regis, Natan Moreira
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/1280246673704789
dc.contributor.authororcid.por.fl_str_mv https://orcid.org/0000-0003-1097-3036
dc.contributor.advisor1orcid.por.fl_str_mv https://orcid.org/0000-0001-5389-7649
dc.contributor.author.fl_str_mv Regis, Natan Moreira
dc.contributor.advisor1.fl_str_mv Lima, Matheus Paes
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/1835846543912999
contributor_str_mv Lima, Matheus Paes
dc.subject.eng.fl_str_mv Transition Metal Halides
Two Dimensional
Monolayer
Excitons
topic Transition Metal Halides
Two Dimensional
Monolayer
Excitons
CIENCIAS EXATAS E DA TERRA::FISICA::FISICA DA MATERIA CONDENSADA::SUPERFICIES E INTERFACES; PELICULAS E FILAMENTOS
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::FISICA::FISICA DA MATERIA CONDENSADA::SUPERFICIES E INTERFACES; PELICULAS E FILAMENTOS
description Two-dimensional materials have experienced rapid growth since the first exfoliation of graphene in 2004, which is an atomically thin sheet of carbon atoms exfoliated from graphite. Despite several unprecedented properties of graphene, induced by quantum confinement, it lacks a band gap that limits some optoelectronic applications. however, graphene motivates a new research field of two-dimensional materials, and their potential compositions and structures, ranging from insulators to semiconductors to conductors. The wide range of conductive behavior within the quantum confinement gives rise to distinct behaviors, including a large exciton binding energy. Excitons are quasi-particles formed by an electron-hole pair that interact through Coulomb attraction, a phenomenon present in semiconductors but more notable in low-dimensional materials due to quantum confinement, which changes the dielectric environment. However, single-particle theoretical methods, such as ground-state density functional theory, do not describe excitons because it is a many-body phenomenon. Thus, a complete characterization of the optical properties of two-dimensional materials requires going beyond a single-particle perspective. Motivated by the accomplishment of several two-dimensional materials and halide perovskites, this work explores a new class of two-dimensional materials, namely, transition metal halide (TMHs) monolayers. We initially selected potential TMHs for optoelectronics in the Computational 2D Materials Database (C2DB) and subsequently analyzed the structural, electronic, optical and excitonic properties using state-of-the-art theoretical methods to study materials such as Density Funcional Theory (DFT) calculations including relativistic and bandgap correction and the evaluation of optical properties including excitonic effect within Tight Binding (TB) Hamiltonian and by the solution of Bethe-Salpeter equation (BSE). Our calculations show that the equilibrium structure calculated by C2DB agrees with those obtained here and with other theoretical works. However, electronic properties exhibit important deviations that are not homogeneous among systems. For iinstance, we observed deviations in the bandgap values up to 17 % when considering relativistic correction and for the corrected bandgap value computed applying the scissors operator methodology. We also computed optical and excitonic properties by solving the Bethe-Salpeter equations, showing isotropic and non-isotropic light absorption among the systems. The inclusion of excitonic effects decreased the maximum light absorption when compared to the absorption coefficient without these effects and also changes in the energy region of spectra. The compositions demonstrated considerable binding energy, highlighting the importance of studying this quasi-particle in theoretical calculations. The possible heterojunctions are hardly influenced by excitonic effects; thus, evaluating possible heterojunctions must take into account exctions. Finally, we found evidence of an excitonic insulator among the systems, where the excited state are preferable than the semiconducting ground state.
publishDate 2024
dc.date.accessioned.fl_str_mv 2024-10-30T20:31:49Z
dc.date.available.fl_str_mv 2024-10-30T20:31:49Z
dc.date.issued.fl_str_mv 2024-08-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv REGIS, Natan Moreira. Two-dimensional transition metal halides for optical applications: impact of excitons. 2024. Dissertação (Mestrado em Física) – Universidade Federal de São Carlos, São Carlos, 2024. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/20908.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/20.500.14289/20908
identifier_str_mv REGIS, Natan Moreira. Two-dimensional transition metal halides for optical applications: impact of excitons. 2024. Dissertação (Mestrado em Física) – Universidade Federal de São Carlos, São Carlos, 2024. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/20908.
url https://repositorio.ufscar.br/handle/20.500.14289/20908
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-ShareAlike 3.0 Brazil
http://creativecommons.org/licenses/by-sa/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-ShareAlike 3.0 Brazil
http://creativecommons.org/licenses/by-sa/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Física - PPGF
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstreams/27f8a455-3813-42b7-b8c8-cd5d7b8cd8bf/download
https://repositorio.ufscar.br/bitstreams/5b75f02b-a7dc-41d2-be5a-f76ce15e2180/download
https://repositorio.ufscar.br/bitstreams/e327d723-c679-44fb-871c-f50b97a2320f/download
https://repositorio.ufscar.br/bitstreams/164b359e-1d6a-44ee-bcfd-2286f3861b39/download
bitstream.checksum.fl_str_mv 3204962046b80a2b21c8f67fc97b1bda
24962d866ec221e5270ccd892e8abee6
2f9f7ee5aaa3a7e1422c41ffc2800c5f
c6e5ca9ee4112329286834c9257d9d4c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv repositorio.sibi@ufscar.br
_version_ 1851688905040986112