Optimum-path forest in support of collaborative filtering
| Ano de defesa: | 2023 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de São Carlos
Câmpus São Carlos |
| Programa de Pós-Graduação: |
Programa de Pós-Graduação em Ciência da Computação - PPGCC
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://repositorio.ufscar.br/handle/20.500.14289/19885 |
Resumo: | Machine learning algorithms are being applied in various computational challenges, among which Recommender Systems (RS) present a range of techniques and approaches to effectively manage large volumes of data and provide personalized and relevant content to users. Such systems must be able to handle data-related issues such as sparsity, scalability, and the cold start problem and Collaborative Filtering (CF) has traditionally been the primary strategy for addressing those challenges. One way to tackled those problems and improve recommendation results is by leveraging auxiliary information sources to compensate the lack of CF data, such as user-item interactions. However, different interpretations of the mentioned problems should be explored. The current work contributes in the field of machine learning by proposing approaches to address the mentioned challenges. This thesis presents a collection of works developed by the author throughout the research period, which have been published or submitted up to the present, encompassing: (i) a systematic literature review which analyzes and discuss recent deep learning approaches employed for CF under sparse-related conditions, while also identifying the challenges and limitations within the field; (ii) a Matrix Factorization (MF)-based ap- proach that leverages CF-related sparsity for the purpose of classifiers fusion; (iii) an alternative unsupervised Optimum-Path Forest (OPF) designed to perform efficiently in large-scale datasets by employing k-approximate-nearest-neighbors graph as its adjacency relation; and (iv) an OPF clustering model built upon the shared-neighborhood concept to alleviate sparsity and high dimensionality issues during CF-based recommendation. The experimental results achieved through such works corroborate the hypotheses of the present thesis. |
| id |
SCAR_835b262485d8fde8e602a7b47d1f75f7 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufscar.br:20.500.14289/19885 |
| network_acronym_str |
SCAR |
| network_name_str |
Repositório Institucional da UFSCAR |
| repository_id_str |
|
| spelling |
Martins, Guilherme BrandãoPapa, João Paulohttp://lattes.cnpq.br/9039182932747194http://lattes.cnpq.br/8300636274454060https://orcid.org/0000-0003-2842-78502024-07-11T12:05:09Z2024-07-11T12:05:09Z2023-12-07MARTINS, Guilherme Brandão. Optimum-path forest in support of collaborative filtering. 2023. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/19885.https://repositorio.ufscar.br/handle/20.500.14289/19885Machine learning algorithms are being applied in various computational challenges, among which Recommender Systems (RS) present a range of techniques and approaches to effectively manage large volumes of data and provide personalized and relevant content to users. Such systems must be able to handle data-related issues such as sparsity, scalability, and the cold start problem and Collaborative Filtering (CF) has traditionally been the primary strategy for addressing those challenges. One way to tackled those problems and improve recommendation results is by leveraging auxiliary information sources to compensate the lack of CF data, such as user-item interactions. However, different interpretations of the mentioned problems should be explored. The current work contributes in the field of machine learning by proposing approaches to address the mentioned challenges. This thesis presents a collection of works developed by the author throughout the research period, which have been published or submitted up to the present, encompassing: (i) a systematic literature review which analyzes and discuss recent deep learning approaches employed for CF under sparse-related conditions, while also identifying the challenges and limitations within the field; (ii) a Matrix Factorization (MF)-based ap- proach that leverages CF-related sparsity for the purpose of classifiers fusion; (iii) an alternative unsupervised Optimum-Path Forest (OPF) designed to perform efficiently in large-scale datasets by employing k-approximate-nearest-neighbors graph as its adjacency relation; and (iv) an OPF clustering model built upon the shared-neighborhood concept to alleviate sparsity and high dimensionality issues during CF-based recommendation. The experimental results achieved through such works corroborate the hypotheses of the present thesis.Algoritmos de aprendizado de máquina têm sido aplicados em diversos desafios computacionais, dentre os quais Sistemas Recomendadores (do inglês, Recommender Systems, RS) contém um conjunto de técnicas e abordagens para lidar efetivamente com extensos volumes de dados e oferecer conteúdos personalizados e relevantes aos usuários. Tais sistemas devem ser capazes de lidar com problemas relativos aos dados, como esparsidade, escalabilidade e cold start, e a Filtragem Colaborativa (do inglês, Collaborative Filtering, CF) tradicionalmente tem sido a principal estratégia para lidar com esses desafios. Uma das maneiras de aprimorar os resultados de recomendação é utilizar fontes auxiliares de informação para compensar a falta de dados de CF, como interações usuário-item. Todavia, diferentes interpretações acerca dos problemas mencionados poderiam ser exploradas. O presente trabalho contribui na área de aprendizado de máquina propondo abordagens para lidar com os desafios supracitados. Esta tese é constituída por uma coletânea de trabalhos desenvolvidos pelo autor durante o período de pesquisa, que foram publicados ou submetidos até a atualidade, apresentando: (i) uma revisão sistemática da literatura que analisa e discute abordagens recentes baseadas em aprendizagem profunda para recomendação sob condições de esparsidade, além de identificar desafios e limitações na área de CF; (ii) uma abordagem baseada em Fatoração de Matriz (do inglês, Matrix Factorization, MF ) que explora esparsidade relativa a CF para fusão de classificadores; (iii) um modelo alternativo do classificador não-supervisionado Floresta de Caminhos Ótimos (do inglês, Optimum-Path Forest, OPF ) projetado para operar eficientemente em conjuntos de dados de grande escala, utilizando relação de adjacência baseada em grafo de k-vizinhos-aproximados; e (iv) um modelo OPF para agrupamento de dados baseado no conceito de vizinhança compartilhada para aliviar esparsidade e alta dimensionalidade durante a recomendação baseada em CF. Os resultados experimentais alcançados por meio de tais trabalhos corroboram as hipóteses da presente tese.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPES: Código de financiamento 001engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência da Computação - PPGCCUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessFloresta de caminhos ótimosFiltragem colaborativaEsparsidadeOptimum-path forestCollaborative filteringSparsityCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAOOptimum-path forest in support of collaborative filteringFloresta de caminhos ótimos no auxílio a filtragem colaborativainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARTEXTtese-guilhermebrandaomartins.pdf.txttese-guilhermebrandaomartins.pdf.txtExtracted texttext/plain100478https://repositorio.ufscar.br/bitstreams/57887fc8-eaa2-480a-be2a-cb4f937c7942/download7ea4dc418c570971d46db6f629036a01MD53falseAnonymousREADTHUMBNAILtese-guilhermebrandaomartins.pdf.jpgtese-guilhermebrandaomartins.pdf.jpgGenerated Thumbnailimage/jpeg3769https://repositorio.ufscar.br/bitstreams/44c2949a-81aa-4b61-93c7-4e6b063af5fc/downloadf7de6ce3a71f24bbe8ea5785010603fbMD54falseAnonymousREADORIGINALtese-guilhermebrandaomartins.pdftese-guilhermebrandaomartins.pdfTese de doutorado - Guilherme Brandão Martinsapplication/pdf6590869https://repositorio.ufscar.br/bitstreams/006e34e9-54cf-4441-a831-87e522d20a73/download0fa0dca93e25181cf32a0db2a3721193MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8810https://repositorio.ufscar.br/bitstreams/6fd26744-3485-4f47-a653-9f1d973a2e0c/downloadf337d95da1fce0a22c77480e5e9a7aecMD52falseAnonymousREAD20.500.14289/198852025-02-06 02:18:08.514http://creativecommons.org/licenses/by-nc-nd/3.0/br/Attribution-NonCommercial-NoDerivs 3.0 Brazilopen.accessoai:repositorio.ufscar.br:20.500.14289/19885https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-06T05:18:08Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
| dc.title.eng.fl_str_mv |
Optimum-path forest in support of collaborative filtering |
| dc.title.alternative.por.fl_str_mv |
Floresta de caminhos ótimos no auxílio a filtragem colaborativa |
| title |
Optimum-path forest in support of collaborative filtering |
| spellingShingle |
Optimum-path forest in support of collaborative filtering Martins, Guilherme Brandão Floresta de caminhos ótimos Filtragem colaborativa Esparsidade Optimum-path forest Collaborative filtering Sparsity CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO |
| title_short |
Optimum-path forest in support of collaborative filtering |
| title_full |
Optimum-path forest in support of collaborative filtering |
| title_fullStr |
Optimum-path forest in support of collaborative filtering |
| title_full_unstemmed |
Optimum-path forest in support of collaborative filtering |
| title_sort |
Optimum-path forest in support of collaborative filtering |
| author |
Martins, Guilherme Brandão |
| author_facet |
Martins, Guilherme Brandão |
| author_role |
author |
| dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/8300636274454060 |
| dc.contributor.authororcid.por.fl_str_mv |
https://orcid.org/0000-0003-2842-7850 |
| dc.contributor.author.fl_str_mv |
Martins, Guilherme Brandão |
| dc.contributor.advisor1.fl_str_mv |
Papa, João Paulo |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/9039182932747194 |
| contributor_str_mv |
Papa, João Paulo |
| dc.subject.por.fl_str_mv |
Floresta de caminhos ótimos Filtragem colaborativa Esparsidade |
| topic |
Floresta de caminhos ótimos Filtragem colaborativa Esparsidade Optimum-path forest Collaborative filtering Sparsity CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO |
| dc.subject.eng.fl_str_mv |
Optimum-path forest Collaborative filtering Sparsity |
| dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO |
| description |
Machine learning algorithms are being applied in various computational challenges, among which Recommender Systems (RS) present a range of techniques and approaches to effectively manage large volumes of data and provide personalized and relevant content to users. Such systems must be able to handle data-related issues such as sparsity, scalability, and the cold start problem and Collaborative Filtering (CF) has traditionally been the primary strategy for addressing those challenges. One way to tackled those problems and improve recommendation results is by leveraging auxiliary information sources to compensate the lack of CF data, such as user-item interactions. However, different interpretations of the mentioned problems should be explored. The current work contributes in the field of machine learning by proposing approaches to address the mentioned challenges. This thesis presents a collection of works developed by the author throughout the research period, which have been published or submitted up to the present, encompassing: (i) a systematic literature review which analyzes and discuss recent deep learning approaches employed for CF under sparse-related conditions, while also identifying the challenges and limitations within the field; (ii) a Matrix Factorization (MF)-based ap- proach that leverages CF-related sparsity for the purpose of classifiers fusion; (iii) an alternative unsupervised Optimum-Path Forest (OPF) designed to perform efficiently in large-scale datasets by employing k-approximate-nearest-neighbors graph as its adjacency relation; and (iv) an OPF clustering model built upon the shared-neighborhood concept to alleviate sparsity and high dimensionality issues during CF-based recommendation. The experimental results achieved through such works corroborate the hypotheses of the present thesis. |
| publishDate |
2023 |
| dc.date.issued.fl_str_mv |
2023-12-07 |
| dc.date.accessioned.fl_str_mv |
2024-07-11T12:05:09Z |
| dc.date.available.fl_str_mv |
2024-07-11T12:05:09Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
MARTINS, Guilherme Brandão. Optimum-path forest in support of collaborative filtering. 2023. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/19885. |
| dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/20.500.14289/19885 |
| identifier_str_mv |
MARTINS, Guilherme Brandão. Optimum-path forest in support of collaborative filtering. 2023. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/19885. |
| url |
https://repositorio.ufscar.br/handle/20.500.14289/19885 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Ciência da Computação - PPGCC |
| dc.publisher.initials.fl_str_mv |
UFSCar |
| publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
| instname_str |
Universidade Federal de São Carlos (UFSCAR) |
| instacron_str |
UFSCAR |
| institution |
UFSCAR |
| reponame_str |
Repositório Institucional da UFSCAR |
| collection |
Repositório Institucional da UFSCAR |
| bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstreams/57887fc8-eaa2-480a-be2a-cb4f937c7942/download https://repositorio.ufscar.br/bitstreams/44c2949a-81aa-4b61-93c7-4e6b063af5fc/download https://repositorio.ufscar.br/bitstreams/006e34e9-54cf-4441-a831-87e522d20a73/download https://repositorio.ufscar.br/bitstreams/6fd26744-3485-4f47-a653-9f1d973a2e0c/download |
| bitstream.checksum.fl_str_mv |
7ea4dc418c570971d46db6f629036a01 f7de6ce3a71f24bbe8ea5785010603fb 0fa0dca93e25181cf32a0db2a3721193 f337d95da1fce0a22c77480e5e9a7aec |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
| repository.mail.fl_str_mv |
repositorio.sibi@ufscar.br |
| _version_ |
1851688811488083968 |