On the advances in pattern recognition using Optimum-Path Forest
| Ano de defesa: | 2020 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de São Carlos
Câmpus São Carlos |
| Programa de Pós-Graduação: |
Programa de Pós-Graduação em Ciência da Computação - PPGCC
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://repositorio.ufscar.br/handle/20.500.14289/13407 |
Resumo: | Pattern recognition (PR) techniques have been paramount to solve different and complex problems in many fields of study. The basic idea behind PR techniques is to compute a model capable of classifying unknown samples. Pattern recognition can be categorized as problems of (i) supervised, and (ii) unsupervised learning. This categorization is related to the existence or absence of labeled data to support the learning process. The learning process is mandatory for PR techniques to learn the data distribution, and the existence of labeled data is an additional information that helps to build more robust models. Many techniques were proposed and are well-established in the literature. The Optimum-Path Forest (OPF) is a graph-based classifier proposed recently, which comprises the models for supervised, semi-supervised and unsupervised learning. The OPF models dataset samples as nodes of a graph and their connections (edges) are defined by some pre-defined adjacency relation. Although very recent, OPF has already been employed in numerous applications and showed promising results, and even outperformed other well-known classifiers. Nonetheless, there is still a lot to be investigated, evaluated and proposed concerning the use and performance of the OPF classifier. This dissertation investigates e proposes variations and modifications to the traditional OPF algorithms concerning supervised and unsupervised learning aiming the assessment of its performance in not yet explored scenarios and to overcome its drawbacks. |
| id |
SCAR_e4982993ab9555bfa725700a421c5f07 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufscar.br:20.500.14289/13407 |
| network_acronym_str |
SCAR |
| network_name_str |
Repositório Institucional da UFSCAR |
| repository_id_str |
|
| spelling |
Sugi Afonso, Luis ClaudioPapa, João Paulohttp://lattes.cnpq.br/9039182932747194http://lattes.cnpq.br/0686979081263816d91c571e-f795-4671-8afb-d0049df01fa42020-11-09T11:51:21Z2020-11-09T11:51:21Z2020-09-24SUGI AFONSO, Luis Claudio. On the advances in pattern recognition using Optimum-Path Forest. 2020. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/13407.https://repositorio.ufscar.br/handle/20.500.14289/13407Pattern recognition (PR) techniques have been paramount to solve different and complex problems in many fields of study. The basic idea behind PR techniques is to compute a model capable of classifying unknown samples. Pattern recognition can be categorized as problems of (i) supervised, and (ii) unsupervised learning. This categorization is related to the existence or absence of labeled data to support the learning process. The learning process is mandatory for PR techniques to learn the data distribution, and the existence of labeled data is an additional information that helps to build more robust models. Many techniques were proposed and are well-established in the literature. The Optimum-Path Forest (OPF) is a graph-based classifier proposed recently, which comprises the models for supervised, semi-supervised and unsupervised learning. The OPF models dataset samples as nodes of a graph and their connections (edges) are defined by some pre-defined adjacency relation. Although very recent, OPF has already been employed in numerous applications and showed promising results, and even outperformed other well-known classifiers. Nonetheless, there is still a lot to be investigated, evaluated and proposed concerning the use and performance of the OPF classifier. This dissertation investigates e proposes variations and modifications to the traditional OPF algorithms concerning supervised and unsupervised learning aiming the assessment of its performance in not yet explored scenarios and to overcome its drawbacks.Técnicas de reconhecimento de padrões (RP) têm sido de grande importância para a solução de muitos problemas de diversos níveis de complexidade e áreas de estudo. A ideia por trás das técnicas de RP está em criar modelos capazes de classificar elementos nunca vistos. Basicamente, os problemas de reconhecimento de padrões podem ser divididos em duas categorias: problemas de aprendizado (i) supervisionado e (ii) não-supervisionado. Essas categorias estão relacionadas com a existência ou não de elementos rotulados para auxiliar no ``aprendizado" dos algoritmos de RP. Um conjunto de elementos de treinamento é fundamental para que as técnicas de RP sejam capazes de identificar padrões existentes, e a presença de dados rotulados pode auxiliar na criação de modelos mais robutos. Muitas técnicas foram desenvolvidas para lidar com tais problemas e estão bem-estabelecidas na literatura. Uma técnica desenvolvida recentemente diz respeito ao classificador baseado em grafos denominado Floresta de Caminhos Ótimos (OPF - \emph{Optimum-Path Forest}), o qual possui as versões de aprendizado supervisionado, semi-supervisionado e não-supervisionado. OPF modela as amostras de um conjunto de dados como sendo os nós de um grafo e as conexões (arestas) são definidas a partir de uma relação de adjacência pré-definida. Apesar de ser uma abordagem recente, OPF já foi empregado em inúmeras aplicações distintas e tem apresentado resultados promissores e superando até mesmo técnicas bem estabelecidas na literatura. Contudo, ainda há muito a ser estudado, avaliado e proposto com relação ao uso e desempenho do classificador em questão. Este trabalho de qualificação investiga e propõe variações e alterações no algoritmo tradicional do OPF das versões de aprendizado supervisionado e não-supervisionado com os objetivos de avaliar seu desempenho em pontos ainda não explorados e superar algumas de suas deficiências.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPES: Código de Financiamento 001engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência da Computação - PPGCCUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessFloresta de Caminhos ÓtimosReconhecimento de padrõesAprendizado de máquinaOptimum-Path ForestPattern RecognitionMachine LearningCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOOn the advances in pattern recognition using Optimum-Path ForestAvanços em reconhecimento de padrões usando Floresta de Caminhos Ótimosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis600600a26a6b97-f6e5-4bd7-9c5a-876ad8cf02fdreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALLuisClaudioSugiAfonso_Thesis.pdfLuisClaudioSugiAfonso_Thesis.pdfThesisapplication/pdf4997415https://repositorio.ufscar.br/bitstreams/49a5ea62-88ed-40cf-9c6a-cb28ea320be8/download3d4d0d87fee7a2a696d1d5b43517c69fMD54trueAnonymousREAD2020-12-19CartaComprovante.pdfCartaComprovante.pdfCarta comprovanteapplication/pdf92463https://repositorio.ufscar.br/bitstreams/a385defd-552b-438d-8fcd-82d86b95ab6a/downloade737168412437a38477b5fa6536a7770MD53falseAnonymousREAD2020-11-07CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstreams/a7666db1-713d-4d16-8c7c-fe2656e4ef61/downloade39d27027a6cc9cb039ad269a5db8e34MD55falseAnonymousREAD2020-12-19TEXTLuisClaudioSugiAfonso_Thesis.pdf.txtLuisClaudioSugiAfonso_Thesis.pdf.txtExtracted texttext/plain311729https://repositorio.ufscar.br/bitstreams/1c357f9a-9fe5-4654-b1ff-31a2cec28c2c/download618f353d97df80f0578d4eca82ea379bMD510falseAnonymousREAD2020-12-19CartaComprovante.pdf.txtCartaComprovante.pdf.txtExtracted texttext/plain1506https://repositorio.ufscar.br/bitstreams/4554eaff-d10d-4cc5-a3a9-5825511ee007/download98cbe38553d64dfd4790ce65784f6a3bMD512falseAnonymousREAD2020-11-07THUMBNAILLuisClaudioSugiAfonso_Thesis.pdf.jpgLuisClaudioSugiAfonso_Thesis.pdf.jpgIM Thumbnailimage/jpeg5517https://repositorio.ufscar.br/bitstreams/19c94a83-4d94-43ed-88cb-fcc60a4386c6/download79869af531eb6d26409ee55ef995ed13MD511falseAnonymousREAD2020-12-19CartaComprovante.pdf.jpgCartaComprovante.pdf.jpgIM Thumbnailimage/jpeg13969https://repositorio.ufscar.br/bitstreams/fc34dfa4-2e85-4114-a23c-3a0780feaab2/download4dd7b717086e2b31af95a33207661567MD513falseAnonymousREAD2020-11-0720.500.14289/134072025-02-05 19:29:09.372http://creativecommons.org/licenses/by-nc-nd/3.0/br/Attribution-NonCommercial-NoDerivs 3.0 Brazilopen.accessoai:repositorio.ufscar.br:20.500.14289/13407https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T22:29:09Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
| dc.title.eng.fl_str_mv |
On the advances in pattern recognition using Optimum-Path Forest |
| dc.title.alternative.por.fl_str_mv |
Avanços em reconhecimento de padrões usando Floresta de Caminhos Ótimos |
| title |
On the advances in pattern recognition using Optimum-Path Forest |
| spellingShingle |
On the advances in pattern recognition using Optimum-Path Forest Sugi Afonso, Luis Claudio Floresta de Caminhos Ótimos Reconhecimento de padrões Aprendizado de máquina Optimum-Path Forest Pattern Recognition Machine Learning CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| title_short |
On the advances in pattern recognition using Optimum-Path Forest |
| title_full |
On the advances in pattern recognition using Optimum-Path Forest |
| title_fullStr |
On the advances in pattern recognition using Optimum-Path Forest |
| title_full_unstemmed |
On the advances in pattern recognition using Optimum-Path Forest |
| title_sort |
On the advances in pattern recognition using Optimum-Path Forest |
| author |
Sugi Afonso, Luis Claudio |
| author_facet |
Sugi Afonso, Luis Claudio |
| author_role |
author |
| dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/0686979081263816 |
| dc.contributor.author.fl_str_mv |
Sugi Afonso, Luis Claudio |
| dc.contributor.advisor1.fl_str_mv |
Papa, João Paulo |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/9039182932747194 |
| dc.contributor.authorID.fl_str_mv |
d91c571e-f795-4671-8afb-d0049df01fa4 |
| contributor_str_mv |
Papa, João Paulo |
| dc.subject.por.fl_str_mv |
Floresta de Caminhos Ótimos Reconhecimento de padrões Aprendizado de máquina |
| topic |
Floresta de Caminhos Ótimos Reconhecimento de padrões Aprendizado de máquina Optimum-Path Forest Pattern Recognition Machine Learning CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| dc.subject.eng.fl_str_mv |
Optimum-Path Forest Pattern Recognition Machine Learning |
| dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| description |
Pattern recognition (PR) techniques have been paramount to solve different and complex problems in many fields of study. The basic idea behind PR techniques is to compute a model capable of classifying unknown samples. Pattern recognition can be categorized as problems of (i) supervised, and (ii) unsupervised learning. This categorization is related to the existence or absence of labeled data to support the learning process. The learning process is mandatory for PR techniques to learn the data distribution, and the existence of labeled data is an additional information that helps to build more robust models. Many techniques were proposed and are well-established in the literature. The Optimum-Path Forest (OPF) is a graph-based classifier proposed recently, which comprises the models for supervised, semi-supervised and unsupervised learning. The OPF models dataset samples as nodes of a graph and their connections (edges) are defined by some pre-defined adjacency relation. Although very recent, OPF has already been employed in numerous applications and showed promising results, and even outperformed other well-known classifiers. Nonetheless, there is still a lot to be investigated, evaluated and proposed concerning the use and performance of the OPF classifier. This dissertation investigates e proposes variations and modifications to the traditional OPF algorithms concerning supervised and unsupervised learning aiming the assessment of its performance in not yet explored scenarios and to overcome its drawbacks. |
| publishDate |
2020 |
| dc.date.accessioned.fl_str_mv |
2020-11-09T11:51:21Z |
| dc.date.available.fl_str_mv |
2020-11-09T11:51:21Z |
| dc.date.issued.fl_str_mv |
2020-09-24 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
SUGI AFONSO, Luis Claudio. On the advances in pattern recognition using Optimum-Path Forest. 2020. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/13407. |
| dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/20.500.14289/13407 |
| identifier_str_mv |
SUGI AFONSO, Luis Claudio. On the advances in pattern recognition using Optimum-Path Forest. 2020. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/13407. |
| url |
https://repositorio.ufscar.br/handle/20.500.14289/13407 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.confidence.fl_str_mv |
600 600 |
| dc.relation.authority.fl_str_mv |
a26a6b97-f6e5-4bd7-9c5a-876ad8cf02fd |
| dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Ciência da Computação - PPGCC |
| dc.publisher.initials.fl_str_mv |
UFSCar |
| publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
| instname_str |
Universidade Federal de São Carlos (UFSCAR) |
| instacron_str |
UFSCAR |
| institution |
UFSCAR |
| reponame_str |
Repositório Institucional da UFSCAR |
| collection |
Repositório Institucional da UFSCAR |
| bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstreams/49a5ea62-88ed-40cf-9c6a-cb28ea320be8/download https://repositorio.ufscar.br/bitstreams/a385defd-552b-438d-8fcd-82d86b95ab6a/download https://repositorio.ufscar.br/bitstreams/a7666db1-713d-4d16-8c7c-fe2656e4ef61/download https://repositorio.ufscar.br/bitstreams/1c357f9a-9fe5-4654-b1ff-31a2cec28c2c/download https://repositorio.ufscar.br/bitstreams/4554eaff-d10d-4cc5-a3a9-5825511ee007/download https://repositorio.ufscar.br/bitstreams/19c94a83-4d94-43ed-88cb-fcc60a4386c6/download https://repositorio.ufscar.br/bitstreams/fc34dfa4-2e85-4114-a23c-3a0780feaab2/download |
| bitstream.checksum.fl_str_mv |
3d4d0d87fee7a2a696d1d5b43517c69f e737168412437a38477b5fa6536a7770 e39d27027a6cc9cb039ad269a5db8e34 618f353d97df80f0578d4eca82ea379b 98cbe38553d64dfd4790ce65784f6a3b 79869af531eb6d26409ee55ef995ed13 4dd7b717086e2b31af95a33207661567 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
| repository.mail.fl_str_mv |
repositorio.sibi@ufscar.br |
| _version_ |
1851688821324775424 |