On the advances in pattern recognition using Optimum-Path Forest

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Sugi Afonso, Luis Claudio
Orientador(a): Papa, João Paulo lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciência da Computação - PPGCC
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/13407
Resumo: Pattern recognition (PR) techniques have been paramount to solve different and complex problems in many fields of study. The basic idea behind PR techniques is to compute a model capable of classifying unknown samples. Pattern recognition can be categorized as problems of (i) supervised, and (ii) unsupervised learning. This categorization is related to the existence or absence of labeled data to support the learning process. The learning process is mandatory for PR techniques to learn the data distribution, and the existence of labeled data is an additional information that helps to build more robust models. Many techniques were proposed and are well-established in the literature. The Optimum-Path Forest (OPF) is a graph-based classifier proposed recently, which comprises the models for supervised, semi-supervised and unsupervised learning. The OPF models dataset samples as nodes of a graph and their connections (edges) are defined by some pre-defined adjacency relation. Although very recent, OPF has already been employed in numerous applications and showed promising results, and even outperformed other well-known classifiers. Nonetheless, there is still a lot to be investigated, evaluated and proposed concerning the use and performance of the OPF classifier. This dissertation investigates e proposes variations and modifications to the traditional OPF algorithms concerning supervised and unsupervised learning aiming the assessment of its performance in not yet explored scenarios and to overcome its drawbacks.
id SCAR_e4982993ab9555bfa725700a421c5f07
oai_identifier_str oai:repositorio.ufscar.br:20.500.14289/13407
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str
spelling Sugi Afonso, Luis ClaudioPapa, João Paulohttp://lattes.cnpq.br/9039182932747194http://lattes.cnpq.br/0686979081263816d91c571e-f795-4671-8afb-d0049df01fa42020-11-09T11:51:21Z2020-11-09T11:51:21Z2020-09-24SUGI AFONSO, Luis Claudio. On the advances in pattern recognition using Optimum-Path Forest. 2020. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/13407.https://repositorio.ufscar.br/handle/20.500.14289/13407Pattern recognition (PR) techniques have been paramount to solve different and complex problems in many fields of study. The basic idea behind PR techniques is to compute a model capable of classifying unknown samples. Pattern recognition can be categorized as problems of (i) supervised, and (ii) unsupervised learning. This categorization is related to the existence or absence of labeled data to support the learning process. The learning process is mandatory for PR techniques to learn the data distribution, and the existence of labeled data is an additional information that helps to build more robust models. Many techniques were proposed and are well-established in the literature. The Optimum-Path Forest (OPF) is a graph-based classifier proposed recently, which comprises the models for supervised, semi-supervised and unsupervised learning. The OPF models dataset samples as nodes of a graph and their connections (edges) are defined by some pre-defined adjacency relation. Although very recent, OPF has already been employed in numerous applications and showed promising results, and even outperformed other well-known classifiers. Nonetheless, there is still a lot to be investigated, evaluated and proposed concerning the use and performance of the OPF classifier. This dissertation investigates e proposes variations and modifications to the traditional OPF algorithms concerning supervised and unsupervised learning aiming the assessment of its performance in not yet explored scenarios and to overcome its drawbacks.Técnicas de reconhecimento de padrões (RP) têm sido de grande importância para a solução de muitos problemas de diversos níveis de complexidade e áreas de estudo. A ideia por trás das técnicas de RP está em criar modelos capazes de classificar elementos nunca vistos. Basicamente, os problemas de reconhecimento de padrões podem ser divididos em duas categorias: problemas de aprendizado (i) supervisionado e (ii) não-supervisionado. Essas categorias estão relacionadas com a existência ou não de elementos rotulados para auxiliar no ``aprendizado" dos algoritmos de RP. Um conjunto de elementos de treinamento é fundamental para que as técnicas de RP sejam capazes de identificar padrões existentes, e a presença de dados rotulados pode auxiliar na criação de modelos mais robutos. Muitas técnicas foram desenvolvidas para lidar com tais problemas e estão bem-estabelecidas na literatura. Uma técnica desenvolvida recentemente diz respeito ao classificador baseado em grafos denominado Floresta de Caminhos Ótimos (OPF - \emph{Optimum-Path Forest}), o qual possui as versões de aprendizado supervisionado, semi-supervisionado e não-supervisionado. OPF modela as amostras de um conjunto de dados como sendo os nós de um grafo e as conexões (arestas) são definidas a partir de uma relação de adjacência pré-definida. Apesar de ser uma abordagem recente, OPF já foi empregado em inúmeras aplicações distintas e tem apresentado resultados promissores e superando até mesmo técnicas bem estabelecidas na literatura. Contudo, ainda há muito a ser estudado, avaliado e proposto com relação ao uso e desempenho do classificador em questão. Este trabalho de qualificação investiga e propõe variações e alterações no algoritmo tradicional do OPF das versões de aprendizado supervisionado e não-supervisionado com os objetivos de avaliar seu desempenho em pontos ainda não explorados e superar algumas de suas deficiências.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPES: Código de Financiamento 001engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência da Computação - PPGCCUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessFloresta de Caminhos ÓtimosReconhecimento de padrõesAprendizado de máquinaOptimum-Path ForestPattern RecognitionMachine LearningCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOOn the advances in pattern recognition using Optimum-Path ForestAvanços em reconhecimento de padrões usando Floresta de Caminhos Ótimosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis600600a26a6b97-f6e5-4bd7-9c5a-876ad8cf02fdreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALLuisClaudioSugiAfonso_Thesis.pdfLuisClaudioSugiAfonso_Thesis.pdfThesisapplication/pdf4997415https://repositorio.ufscar.br/bitstreams/49a5ea62-88ed-40cf-9c6a-cb28ea320be8/download3d4d0d87fee7a2a696d1d5b43517c69fMD54trueAnonymousREAD2020-12-19CartaComprovante.pdfCartaComprovante.pdfCarta comprovanteapplication/pdf92463https://repositorio.ufscar.br/bitstreams/a385defd-552b-438d-8fcd-82d86b95ab6a/downloade737168412437a38477b5fa6536a7770MD53falseAnonymousREAD2020-11-07CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstreams/a7666db1-713d-4d16-8c7c-fe2656e4ef61/downloade39d27027a6cc9cb039ad269a5db8e34MD55falseAnonymousREAD2020-12-19TEXTLuisClaudioSugiAfonso_Thesis.pdf.txtLuisClaudioSugiAfonso_Thesis.pdf.txtExtracted texttext/plain311729https://repositorio.ufscar.br/bitstreams/1c357f9a-9fe5-4654-b1ff-31a2cec28c2c/download618f353d97df80f0578d4eca82ea379bMD510falseAnonymousREAD2020-12-19CartaComprovante.pdf.txtCartaComprovante.pdf.txtExtracted texttext/plain1506https://repositorio.ufscar.br/bitstreams/4554eaff-d10d-4cc5-a3a9-5825511ee007/download98cbe38553d64dfd4790ce65784f6a3bMD512falseAnonymousREAD2020-11-07THUMBNAILLuisClaudioSugiAfonso_Thesis.pdf.jpgLuisClaudioSugiAfonso_Thesis.pdf.jpgIM Thumbnailimage/jpeg5517https://repositorio.ufscar.br/bitstreams/19c94a83-4d94-43ed-88cb-fcc60a4386c6/download79869af531eb6d26409ee55ef995ed13MD511falseAnonymousREAD2020-12-19CartaComprovante.pdf.jpgCartaComprovante.pdf.jpgIM Thumbnailimage/jpeg13969https://repositorio.ufscar.br/bitstreams/fc34dfa4-2e85-4114-a23c-3a0780feaab2/download4dd7b717086e2b31af95a33207661567MD513falseAnonymousREAD2020-11-0720.500.14289/134072025-02-05 19:29:09.372http://creativecommons.org/licenses/by-nc-nd/3.0/br/Attribution-NonCommercial-NoDerivs 3.0 Brazilopen.accessoai:repositorio.ufscar.br:20.500.14289/13407https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T22:29:09Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.eng.fl_str_mv On the advances in pattern recognition using Optimum-Path Forest
dc.title.alternative.por.fl_str_mv Avanços em reconhecimento de padrões usando Floresta de Caminhos Ótimos
title On the advances in pattern recognition using Optimum-Path Forest
spellingShingle On the advances in pattern recognition using Optimum-Path Forest
Sugi Afonso, Luis Claudio
Floresta de Caminhos Ótimos
Reconhecimento de padrões
Aprendizado de máquina
Optimum-Path Forest
Pattern Recognition
Machine Learning
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short On the advances in pattern recognition using Optimum-Path Forest
title_full On the advances in pattern recognition using Optimum-Path Forest
title_fullStr On the advances in pattern recognition using Optimum-Path Forest
title_full_unstemmed On the advances in pattern recognition using Optimum-Path Forest
title_sort On the advances in pattern recognition using Optimum-Path Forest
author Sugi Afonso, Luis Claudio
author_facet Sugi Afonso, Luis Claudio
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/0686979081263816
dc.contributor.author.fl_str_mv Sugi Afonso, Luis Claudio
dc.contributor.advisor1.fl_str_mv Papa, João Paulo
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/9039182932747194
dc.contributor.authorID.fl_str_mv d91c571e-f795-4671-8afb-d0049df01fa4
contributor_str_mv Papa, João Paulo
dc.subject.por.fl_str_mv Floresta de Caminhos Ótimos
Reconhecimento de padrões
Aprendizado de máquina
topic Floresta de Caminhos Ótimos
Reconhecimento de padrões
Aprendizado de máquina
Optimum-Path Forest
Pattern Recognition
Machine Learning
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
dc.subject.eng.fl_str_mv Optimum-Path Forest
Pattern Recognition
Machine Learning
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description Pattern recognition (PR) techniques have been paramount to solve different and complex problems in many fields of study. The basic idea behind PR techniques is to compute a model capable of classifying unknown samples. Pattern recognition can be categorized as problems of (i) supervised, and (ii) unsupervised learning. This categorization is related to the existence or absence of labeled data to support the learning process. The learning process is mandatory for PR techniques to learn the data distribution, and the existence of labeled data is an additional information that helps to build more robust models. Many techniques were proposed and are well-established in the literature. The Optimum-Path Forest (OPF) is a graph-based classifier proposed recently, which comprises the models for supervised, semi-supervised and unsupervised learning. The OPF models dataset samples as nodes of a graph and their connections (edges) are defined by some pre-defined adjacency relation. Although very recent, OPF has already been employed in numerous applications and showed promising results, and even outperformed other well-known classifiers. Nonetheless, there is still a lot to be investigated, evaluated and proposed concerning the use and performance of the OPF classifier. This dissertation investigates e proposes variations and modifications to the traditional OPF algorithms concerning supervised and unsupervised learning aiming the assessment of its performance in not yet explored scenarios and to overcome its drawbacks.
publishDate 2020
dc.date.accessioned.fl_str_mv 2020-11-09T11:51:21Z
dc.date.available.fl_str_mv 2020-11-09T11:51:21Z
dc.date.issued.fl_str_mv 2020-09-24
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SUGI AFONSO, Luis Claudio. On the advances in pattern recognition using Optimum-Path Forest. 2020. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/13407.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/20.500.14289/13407
identifier_str_mv SUGI AFONSO, Luis Claudio. On the advances in pattern recognition using Optimum-Path Forest. 2020. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/13407.
url https://repositorio.ufscar.br/handle/20.500.14289/13407
dc.language.iso.fl_str_mv eng
language eng
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv a26a6b97-f6e5-4bd7-9c5a-876ad8cf02fd
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência da Computação - PPGCC
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstreams/49a5ea62-88ed-40cf-9c6a-cb28ea320be8/download
https://repositorio.ufscar.br/bitstreams/a385defd-552b-438d-8fcd-82d86b95ab6a/download
https://repositorio.ufscar.br/bitstreams/a7666db1-713d-4d16-8c7c-fe2656e4ef61/download
https://repositorio.ufscar.br/bitstreams/1c357f9a-9fe5-4654-b1ff-31a2cec28c2c/download
https://repositorio.ufscar.br/bitstreams/4554eaff-d10d-4cc5-a3a9-5825511ee007/download
https://repositorio.ufscar.br/bitstreams/19c94a83-4d94-43ed-88cb-fcc60a4386c6/download
https://repositorio.ufscar.br/bitstreams/fc34dfa4-2e85-4114-a23c-3a0780feaab2/download
bitstream.checksum.fl_str_mv 3d4d0d87fee7a2a696d1d5b43517c69f
e737168412437a38477b5fa6536a7770
e39d27027a6cc9cb039ad269a5db8e34
618f353d97df80f0578d4eca82ea379b
98cbe38553d64dfd4790ce65784f6a3b
79869af531eb6d26409ee55ef995ed13
4dd7b717086e2b31af95a33207661567
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv repositorio.sibi@ufscar.br
_version_ 1851688821324775424