Seleção de fornecedores sob incertezas via otimização robusta
| Ano de defesa: | 2019 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de São Carlos
Câmpus São Carlos |
| Programa de Pós-Graduação: |
Programa de Pós-Graduação em Engenharia de Produção - PPGEP
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://repositorio.ufscar.br/handle/20.500.14289/12419 |
Resumo: | This paper studies the problem of selection of suppliers under uncertainties, motivated by the current economic situation of world trade. The fierce search among the organizations for responsiveness in meeting the market demand has been directing efforts for optimization in the supply chain. One of the main links in this context is the supply of raw materials. The rupture of the supply of a raw material can cause the blockade or paralysis of the entire organizational system, leading to an operational failure to meet a demand, damaging the image of the organization to the market. The decision of the best choice of supply has become a vital activity for organizations in the current scenario, as the chain's operational performance is strongly tied to this fundamental link. With this, the decision to select suppliers becomes a very complex activity, requiring a high level of precision and assertiveness. The objective of this work is to develop and apply optimization approaches that incorporate the uncertainties in the context in which the global supply of raw materials is inserted through the Robust Optimization approach. Two models of mixed integer linear programming are proposed for the deterministic problem, from which the robust counterparts that model the problem under uncertainties are obtained. The models were implemented using general purpose optimization software. Monte Carlo simulations were performed to determine the performances of the deterministic and robust models in samples of different scenarios, as well as the level of robustness of the solutions. The computational experiments pointed out that the Robust Optimization approach enhances the robustness of solutions in risk aversion when uncertain parameters are involved. This was evidenced by the level of encumbrance promoted in the values of the solutions when a protection to the uncertainty was employed, since the increase in the optimal value of the objective function in the worst case is always smaller than the deviation of the uncertain parameters. |
| id |
SCAR_ac64bcf5cb17159609649a0b8f8482f7 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufscar.br:20.500.14289/12419 |
| network_acronym_str |
SCAR |
| network_name_str |
Repositório Institucional da UFSCAR |
| repository_id_str |
|
| spelling |
Tavares, Cassiano da SilvaMunari Junior, Pedro Augustohttp://lattes.cnpq.br/1328868140869976Godinho Filho, Moacirhttp://lattes.cnpq.br/6136685270563354http://lattes.cnpq.br/03166362138860707fba906a-55b2-4fb1-a914-75119e5d11c42020-04-07T12:46:32Z2020-04-07T12:46:32Z2019-04-25TAVARES, Cassiano da Silva. Seleção de fornecedores sob incertezas via otimização robusta. 2019. Dissertação (Mestrado em Engenharia de Produção) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/12419.https://repositorio.ufscar.br/handle/20.500.14289/12419This paper studies the problem of selection of suppliers under uncertainties, motivated by the current economic situation of world trade. The fierce search among the organizations for responsiveness in meeting the market demand has been directing efforts for optimization in the supply chain. One of the main links in this context is the supply of raw materials. The rupture of the supply of a raw material can cause the blockade or paralysis of the entire organizational system, leading to an operational failure to meet a demand, damaging the image of the organization to the market. The decision of the best choice of supply has become a vital activity for organizations in the current scenario, as the chain's operational performance is strongly tied to this fundamental link. With this, the decision to select suppliers becomes a very complex activity, requiring a high level of precision and assertiveness. The objective of this work is to develop and apply optimization approaches that incorporate the uncertainties in the context in which the global supply of raw materials is inserted through the Robust Optimization approach. Two models of mixed integer linear programming are proposed for the deterministic problem, from which the robust counterparts that model the problem under uncertainties are obtained. The models were implemented using general purpose optimization software. Monte Carlo simulations were performed to determine the performances of the deterministic and robust models in samples of different scenarios, as well as the level of robustness of the solutions. The computational experiments pointed out that the Robust Optimization approach enhances the robustness of solutions in risk aversion when uncertain parameters are involved. This was evidenced by the level of encumbrance promoted in the values of the solutions when a protection to the uncertainty was employed, since the increase in the optimal value of the objective function in the worst case is always smaller than the deviation of the uncertain parameters.Este trabalho estuda o problema de seleção de fornecedores sob incertezas, motivado pela atual situação econômica do comércio mundial. A busca acirrada entre as organizações pela responsividade no atendimento à demanda de mercado vem direcionando esforços para a otimização na cadeia de suprimentos. Um dos principais elos neste contexto é o fornecimento das matérias primas. A ruptura do fornecimento de uma matéria prima pode ocasionar o bloqueio ou paralisação de todo o sistema organizacional, levando a um insucesso operacional no atendimento de uma determinada demanda, prejudicando a imagem da organização perante o mercado. A decisão da melhor escolha de fornecimento tornou-se uma atividade vital para as organizações no panorama atual, pois o desempenho operacional da cadeia está fortemente atrelado a este elo fundamental. Com isso, a decisão de seleção de fornecedores se torna uma atividade muito complexa, exigindo um nível de precisão e assertividade elevado. O objetivo deste trabalho consiste em desenvolver e aplicar abordagens de otimização que incorporem as incertezas no contexto em que o fornecimento de matérias primas mundial está inserido, por meio da abordagem de Otimização Robusta. São propostos dois modelos de programação linear inteira mista para o problema determinístico, a partir dos quais são obtidas as contrapartes robustas que modelam o problema sob incertezas. Os modelos foram implementados utilizando um software de otimização de propósito geral. Simulações de Monte Carlo foram realizadas para conhecer os desempenhos dos modelos determinísticos e robustos em amostras de diversos cenários, bem como o nível de robustez das soluções. Os experimentos computacionais apontaram que a abordagem de Otimização Robusta potencializa o nível de robustez das soluções em aversão aos riscos, quando parâmetros incertos estão envolvidos. Isto foi comprovado pelo nível de oneração promovida nos valores das soluções quando uma proteção à incerteza foi empregada, pois o incremento no valor ótimo da função objetivo no pior caso sempre é menor que o desvio dos parâmetros incertos.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPES: código de financiamento - 001porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Engenharia de Produção - PPGEPUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessSeleção de fornecedoresOtimização sob incertezasOtimização robustaSupply selectionUncertainty optimizationRobust optimizationENGENHARIAS::ENGENHARIA DE PRODUCAO::PESQUISA OPERACIONALSeleção de fornecedores sob incertezas via otimização robustaSupplier selection under uncertainty through robust optimizationinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis600600c27d7114-206e-4c0c-ad44-eb71a95b0941reponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALDissertação Cassiano Tavares - versão final.pdfDissertação Cassiano Tavares - versão final.pdfVersão final da dissertação do aluno Cassiano da Silva Tavares.application/pdf2425840https://repositorio.ufscar.br/bitstreams/84e0b574-3853-4f7e-95d1-5748a313e267/download346bbdebc9bee38e3a992fb29c2f38efMD51trueAnonymousREADscan00.PDFscan00.PDFFormulário do departamento indicando que o texto submetido é a versão final da dissertação.application/pdf308971https://repositorio.ufscar.br/bitstreams/33205bd8-10ab-4c11-bdcc-62e5709946e7/download489e42ac6a476d851457800857e5d071MD52falseAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstreams/74944e98-043e-4fbf-b63c-9c4930ef45f4/downloade39d27027a6cc9cb039ad269a5db8e34MD53falseAnonymousREADTEXTDissertação Cassiano Tavares - versão final.pdf.txtDissertação Cassiano Tavares - versão final.pdf.txtExtracted texttext/plain251871https://repositorio.ufscar.br/bitstreams/4a142530-7eea-4959-b75a-17f75f40b49f/download51ed8b489a265e561814246e03a4f47eMD58falseAnonymousREADscan00.PDF.txtscan00.PDF.txtExtracted texttext/plain1https://repositorio.ufscar.br/bitstreams/bc9910d9-3188-480c-ac8d-6c51f207a056/download68b329da9893e34099c7d8ad5cb9c940MD510falseAnonymousREADTHUMBNAILDissertação Cassiano Tavares - versão final.pdf.jpgDissertação Cassiano Tavares - versão final.pdf.jpgIM Thumbnailimage/jpeg2971https://repositorio.ufscar.br/bitstreams/558dc18e-c86e-4e91-a969-fbcdfff596d2/downloadd252c26fbf8002212d43052da3b4cc23MD59falseAnonymousREADscan00.PDF.jpgscan00.PDF.jpgIM Thumbnailimage/jpeg12691https://repositorio.ufscar.br/bitstreams/f5c093bb-42fa-4a4c-a090-d1ae69efc98f/downloadef8852b329521a41f81e0cb393486457MD511falseAnonymousREAD20.500.14289/124192025-02-05 18:24:44.26http://creativecommons.org/licenses/by-nc-nd/3.0/br/Attribution-NonCommercial-NoDerivs 3.0 Brazilopen.accessoai:repositorio.ufscar.br:20.500.14289/12419https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T21:24:44Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
| dc.title.por.fl_str_mv |
Seleção de fornecedores sob incertezas via otimização robusta |
| dc.title.alternative.eng.fl_str_mv |
Supplier selection under uncertainty through robust optimization |
| title |
Seleção de fornecedores sob incertezas via otimização robusta |
| spellingShingle |
Seleção de fornecedores sob incertezas via otimização robusta Tavares, Cassiano da Silva Seleção de fornecedores Otimização sob incertezas Otimização robusta Supply selection Uncertainty optimization Robust optimization ENGENHARIAS::ENGENHARIA DE PRODUCAO::PESQUISA OPERACIONAL |
| title_short |
Seleção de fornecedores sob incertezas via otimização robusta |
| title_full |
Seleção de fornecedores sob incertezas via otimização robusta |
| title_fullStr |
Seleção de fornecedores sob incertezas via otimização robusta |
| title_full_unstemmed |
Seleção de fornecedores sob incertezas via otimização robusta |
| title_sort |
Seleção de fornecedores sob incertezas via otimização robusta |
| author |
Tavares, Cassiano da Silva |
| author_facet |
Tavares, Cassiano da Silva |
| author_role |
author |
| dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/0316636213886070 |
| dc.contributor.author.fl_str_mv |
Tavares, Cassiano da Silva |
| dc.contributor.advisor1.fl_str_mv |
Munari Junior, Pedro Augusto |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/1328868140869976 |
| dc.contributor.advisor-co1.fl_str_mv |
Godinho Filho, Moacir |
| dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/6136685270563354 |
| dc.contributor.authorID.fl_str_mv |
7fba906a-55b2-4fb1-a914-75119e5d11c4 |
| contributor_str_mv |
Munari Junior, Pedro Augusto Godinho Filho, Moacir |
| dc.subject.por.fl_str_mv |
Seleção de fornecedores Otimização sob incertezas Otimização robusta |
| topic |
Seleção de fornecedores Otimização sob incertezas Otimização robusta Supply selection Uncertainty optimization Robust optimization ENGENHARIAS::ENGENHARIA DE PRODUCAO::PESQUISA OPERACIONAL |
| dc.subject.eng.fl_str_mv |
Supply selection Uncertainty optimization Robust optimization |
| dc.subject.cnpq.fl_str_mv |
ENGENHARIAS::ENGENHARIA DE PRODUCAO::PESQUISA OPERACIONAL |
| description |
This paper studies the problem of selection of suppliers under uncertainties, motivated by the current economic situation of world trade. The fierce search among the organizations for responsiveness in meeting the market demand has been directing efforts for optimization in the supply chain. One of the main links in this context is the supply of raw materials. The rupture of the supply of a raw material can cause the blockade or paralysis of the entire organizational system, leading to an operational failure to meet a demand, damaging the image of the organization to the market. The decision of the best choice of supply has become a vital activity for organizations in the current scenario, as the chain's operational performance is strongly tied to this fundamental link. With this, the decision to select suppliers becomes a very complex activity, requiring a high level of precision and assertiveness. The objective of this work is to develop and apply optimization approaches that incorporate the uncertainties in the context in which the global supply of raw materials is inserted through the Robust Optimization approach. Two models of mixed integer linear programming are proposed for the deterministic problem, from which the robust counterparts that model the problem under uncertainties are obtained. The models were implemented using general purpose optimization software. Monte Carlo simulations were performed to determine the performances of the deterministic and robust models in samples of different scenarios, as well as the level of robustness of the solutions. The computational experiments pointed out that the Robust Optimization approach enhances the robustness of solutions in risk aversion when uncertain parameters are involved. This was evidenced by the level of encumbrance promoted in the values of the solutions when a protection to the uncertainty was employed, since the increase in the optimal value of the objective function in the worst case is always smaller than the deviation of the uncertain parameters. |
| publishDate |
2019 |
| dc.date.issued.fl_str_mv |
2019-04-25 |
| dc.date.accessioned.fl_str_mv |
2020-04-07T12:46:32Z |
| dc.date.available.fl_str_mv |
2020-04-07T12:46:32Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
TAVARES, Cassiano da Silva. Seleção de fornecedores sob incertezas via otimização robusta. 2019. Dissertação (Mestrado em Engenharia de Produção) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/12419. |
| dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/20.500.14289/12419 |
| identifier_str_mv |
TAVARES, Cassiano da Silva. Seleção de fornecedores sob incertezas via otimização robusta. 2019. Dissertação (Mestrado em Engenharia de Produção) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/12419. |
| url |
https://repositorio.ufscar.br/handle/20.500.14289/12419 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.confidence.fl_str_mv |
600 600 |
| dc.relation.authority.fl_str_mv |
c27d7114-206e-4c0c-ad44-eb71a95b0941 |
| dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia de Produção - PPGEP |
| dc.publisher.initials.fl_str_mv |
UFSCar |
| publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
| instname_str |
Universidade Federal de São Carlos (UFSCAR) |
| instacron_str |
UFSCAR |
| institution |
UFSCAR |
| reponame_str |
Repositório Institucional da UFSCAR |
| collection |
Repositório Institucional da UFSCAR |
| bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstreams/84e0b574-3853-4f7e-95d1-5748a313e267/download https://repositorio.ufscar.br/bitstreams/33205bd8-10ab-4c11-bdcc-62e5709946e7/download https://repositorio.ufscar.br/bitstreams/74944e98-043e-4fbf-b63c-9c4930ef45f4/download https://repositorio.ufscar.br/bitstreams/4a142530-7eea-4959-b75a-17f75f40b49f/download https://repositorio.ufscar.br/bitstreams/bc9910d9-3188-480c-ac8d-6c51f207a056/download https://repositorio.ufscar.br/bitstreams/558dc18e-c86e-4e91-a969-fbcdfff596d2/download https://repositorio.ufscar.br/bitstreams/f5c093bb-42fa-4a4c-a090-d1ae69efc98f/download |
| bitstream.checksum.fl_str_mv |
346bbdebc9bee38e3a992fb29c2f38ef 489e42ac6a476d851457800857e5d071 e39d27027a6cc9cb039ad269a5db8e34 51ed8b489a265e561814246e03a4f47e 68b329da9893e34099c7d8ad5cb9c940 d252c26fbf8002212d43052da3b4cc23 ef8852b329521a41f81e0cb393486457 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
| repository.mail.fl_str_mv |
repositorio.sibi@ufscar.br |
| _version_ |
1851688811473403904 |