Improved parallel algorithm for finding minimum cuts in stochastic flow networks
| Ano de defesa: | 2025 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de São Carlos
Câmpus São Carlos |
| Programa de Pós-Graduação: |
Programa de Pós-Graduação em Ciência da Computação - PPGCC
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://hdl.handle.net/20.500.14289/22521 |
Resumo: | The expansion of information in social networks, bioinformatics, and transportation has resulted in the emergence of enormous graphs with millions or even billions of nodes and edges. Examples include communication networks with stochastic bandwidth, traffic systems with probabilistic congestion, and power grids with uncertain load demand. These scenarios pose unique computational challenges due to their probabilistic nature and dynamic structure. Traditional sequential techniques for identifying minimum cuts in graphs are ineffective in this context, as their time complexity becomes excessively high. This thesis addresses the problem by employing parallel techniques to compute minimum cuts more efficiently on large-scale graphs, leveraging modern parallel computing resources without compromising accuracy. The initial investigation explores state-of-the-art algorithms such as Parallel Push-Relabel and Parallel Karger, which depend on specific hardware and software conditions. The results support the design of the Dynamic Parallel Graph Cuts Algorithm (DPGCA), while also identifying limitations such as inefficient memory usage, limited energy scalability, and poor resource distribution in current parallel implementations. |
| id |
SCAR_b14ec24744605c1279b824b6311aecdb |
|---|---|
| oai_identifier_str |
oai:repositorio.ufscar.br:20.500.14289/22521 |
| network_acronym_str |
SCAR |
| network_name_str |
Repositório Institucional da UFSCAR |
| repository_id_str |
|
| spelling |
Joshan, Mohammad SadeghPedrino, Emerson Carloshttp://lattes.cnpq.br/6481363465527189https://lattes.cnpq.br/0277215938197917https://orcid.org/0009-0000-5164-3346https://orcid.org/0000-0003-3734-32022025-08-05T12:52:02Z2025-05-27JOSHAN, Mohammad Sadegh. Improved parallel algorithm for finding minimum cuts in stochastic flow networks. 2025. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2025. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/22521.https://hdl.handle.net/20.500.14289/22521The expansion of information in social networks, bioinformatics, and transportation has resulted in the emergence of enormous graphs with millions or even billions of nodes and edges. Examples include communication networks with stochastic bandwidth, traffic systems with probabilistic congestion, and power grids with uncertain load demand. These scenarios pose unique computational challenges due to their probabilistic nature and dynamic structure. Traditional sequential techniques for identifying minimum cuts in graphs are ineffective in this context, as their time complexity becomes excessively high. This thesis addresses the problem by employing parallel techniques to compute minimum cuts more efficiently on large-scale graphs, leveraging modern parallel computing resources without compromising accuracy. The initial investigation explores state-of-the-art algorithms such as Parallel Push-Relabel and Parallel Karger, which depend on specific hardware and software conditions. The results support the design of the Dynamic Parallel Graph Cuts Algorithm (DPGCA), while also identifying limitations such as inefficient memory usage, limited energy scalability, and poor resource distribution in current parallel implementations.A expansão da informação em redes sociais, bioinformática e transporte resultou no surgimento de grafos enormes com milhões ou até bilhões de nós e arestas. Exemplos incluem redes de comunicação com largura de banda estocástica, sistemas de tráfego com congestionamento probabilístico e redes elétricas com demanda de carga incerta. Esses cenários apresentam desafios computacionais únicos devido à sua natureza probabilística e estrutura dinâmica. Técnicas sequenciais tradicionais para identificação de cortes mínimos em grafos tornam-se ineficazes nesse contexto, pois a complexidade de tempo envolvida é excessivamente alta. Esta tese aborda esse problema empregando técnicas paralelas para calcular cortes mínimos de forma mais eficiente em grafos de larga escala, aproveitando recursos modernos de computação paralela sem comprometer a precisão. A investigação inicial explora algoritmos de ponta, como Parallel Push-Relabel e Parallel Karger, que operam sob condições específicas de hardware e software. Os resultados apoiam o desenvolvimento do Algoritmo de Cortes de Grafos Paralelos Dinâmicos (DPGCA), além de identificar limitações como o uso ineficiente de memória, baixa escalabilidade energética e distribuição inadequada de recursos nas implementações paralelas atuais.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)88887.885209/2023-00engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência da Computação - PPGCCUFSCarhttps://ieeexplore.ieee.org/document/10930375Attribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessParallel algorithmsMinimum cutStochastic flow networksNetwork reliabilityGraph partitioningFlow optimizationCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAOAlgoritmos paralelosCorte mínimoRedes de fluxo estocásticoConfiabilidade de redesParticionamento de grafosOtimização de fluxoImproved parallel algorithm for finding minimum cuts in stochastic flow networksAlgoritmo paralelo aprimorado para encontrar cortes mínimos em redes de fluxo estocásticoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALDissertação de Mestrado_Joshan.pdfImproved_Parallel_Algorithm_for_Finding_Minimum_Cuts_in_Stochastic_Flow_Networks__1_.pdfapplication/pdf17184487https://repositorio.ufscar.br/bitstreams/bc35d41e-4c22-4d86-9564-657e1f7d44d6/download2c212d4881d3ba327aba25bc16acae4dMD55trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8906https://repositorio.ufscar.br/bitstreams/1698719c-81cd-44d0-80ec-5a0e6cfa0d4d/downloadfba754f0467e45ac3862bc2533fb2736MD52falseAnonymousREADTEXTDissertação de Mestrado_Joshan.pdf.txtDissertação de Mestrado_Joshan.pdf.txtExtracted texttext/plain101670https://repositorio.ufscar.br/bitstreams/976e2145-e470-4321-8d1a-0cc01e27532d/download44e65122571dce75bb59a5fb6caba27eMD56falseAnonymousREADTHUMBNAILDissertação de Mestrado_Joshan.pdf.jpgDissertação de Mestrado_Joshan.pdf.jpgGenerated Thumbnailimage/jpeg3154https://repositorio.ufscar.br/bitstreams/d75604b7-798f-47c6-8c52-ec7d3fa6f16b/downloadc06c5e36ed502ab1c164696edec60426MD57falseAnonymousREAD20.500.14289/225212025-09-09T16:43:31.418369Zhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/Attribution-NonCommercial-NoDerivs 3.0 Brazilopen.accessoai:repositorio.ufscar.br:20.500.14289/22521https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-09-09T16:43:31Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
| dc.title.eng.fl_str_mv |
Improved parallel algorithm for finding minimum cuts in stochastic flow networks |
| dc.title.alternative.por.fl_str_mv |
Algoritmo paralelo aprimorado para encontrar cortes mínimos em redes de fluxo estocástico |
| title |
Improved parallel algorithm for finding minimum cuts in stochastic flow networks |
| spellingShingle |
Improved parallel algorithm for finding minimum cuts in stochastic flow networks Joshan, Mohammad Sadegh Parallel algorithms Minimum cut Stochastic flow networks Network reliability Graph partitioning Flow optimization CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO Algoritmos paralelos Corte mínimo Redes de fluxo estocástico Confiabilidade de redes Particionamento de grafos Otimização de fluxo |
| title_short |
Improved parallel algorithm for finding minimum cuts in stochastic flow networks |
| title_full |
Improved parallel algorithm for finding minimum cuts in stochastic flow networks |
| title_fullStr |
Improved parallel algorithm for finding minimum cuts in stochastic flow networks |
| title_full_unstemmed |
Improved parallel algorithm for finding minimum cuts in stochastic flow networks |
| title_sort |
Improved parallel algorithm for finding minimum cuts in stochastic flow networks |
| author |
Joshan, Mohammad Sadegh |
| author_facet |
Joshan, Mohammad Sadegh |
| author_role |
author |
| dc.contributor.authorlattes.none.fl_str_mv |
https://lattes.cnpq.br/0277215938197917 |
| dc.contributor.authororcid.none.fl_str_mv |
https://orcid.org/0009-0000-5164-3346 |
| dc.contributor.advisor1orcid.none.fl_str_mv |
https://orcid.org/0000-0003-3734-3202 |
| dc.contributor.author.fl_str_mv |
Joshan, Mohammad Sadegh |
| dc.contributor.advisor1.fl_str_mv |
Pedrino, Emerson Carlos |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/6481363465527189 |
| contributor_str_mv |
Pedrino, Emerson Carlos |
| dc.subject.eng.fl_str_mv |
Parallel algorithms Minimum cut Stochastic flow networks Network reliability Graph partitioning Flow optimization |
| topic |
Parallel algorithms Minimum cut Stochastic flow networks Network reliability Graph partitioning Flow optimization CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO Algoritmos paralelos Corte mínimo Redes de fluxo estocástico Confiabilidade de redes Particionamento de grafos Otimização de fluxo |
| dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO |
| dc.subject.por.fl_str_mv |
Algoritmos paralelos Corte mínimo Redes de fluxo estocástico Confiabilidade de redes Particionamento de grafos Otimização de fluxo |
| description |
The expansion of information in social networks, bioinformatics, and transportation has resulted in the emergence of enormous graphs with millions or even billions of nodes and edges. Examples include communication networks with stochastic bandwidth, traffic systems with probabilistic congestion, and power grids with uncertain load demand. These scenarios pose unique computational challenges due to their probabilistic nature and dynamic structure. Traditional sequential techniques for identifying minimum cuts in graphs are ineffective in this context, as their time complexity becomes excessively high. This thesis addresses the problem by employing parallel techniques to compute minimum cuts more efficiently on large-scale graphs, leveraging modern parallel computing resources without compromising accuracy. The initial investigation explores state-of-the-art algorithms such as Parallel Push-Relabel and Parallel Karger, which depend on specific hardware and software conditions. The results support the design of the Dynamic Parallel Graph Cuts Algorithm (DPGCA), while also identifying limitations such as inefficient memory usage, limited energy scalability, and poor resource distribution in current parallel implementations. |
| publishDate |
2025 |
| dc.date.accessioned.fl_str_mv |
2025-08-05T12:52:02Z |
| dc.date.issued.fl_str_mv |
2025-05-27 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
JOSHAN, Mohammad Sadegh. Improved parallel algorithm for finding minimum cuts in stochastic flow networks. 2025. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2025. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/22521. |
| dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/20.500.14289/22521 |
| identifier_str_mv |
JOSHAN, Mohammad Sadegh. Improved parallel algorithm for finding minimum cuts in stochastic flow networks. 2025. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2025. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/22521. |
| url |
https://hdl.handle.net/20.500.14289/22521 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.uri.none.fl_str_mv |
https://ieeexplore.ieee.org/document/10930375 |
| dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Ciência da Computação - PPGCC |
| dc.publisher.initials.fl_str_mv |
UFSCar |
| publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
| instname_str |
Universidade Federal de São Carlos (UFSCAR) |
| instacron_str |
UFSCAR |
| institution |
UFSCAR |
| reponame_str |
Repositório Institucional da UFSCAR |
| collection |
Repositório Institucional da UFSCAR |
| bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstreams/bc35d41e-4c22-4d86-9564-657e1f7d44d6/download https://repositorio.ufscar.br/bitstreams/1698719c-81cd-44d0-80ec-5a0e6cfa0d4d/download https://repositorio.ufscar.br/bitstreams/976e2145-e470-4321-8d1a-0cc01e27532d/download https://repositorio.ufscar.br/bitstreams/d75604b7-798f-47c6-8c52-ec7d3fa6f16b/download |
| bitstream.checksum.fl_str_mv |
2c212d4881d3ba327aba25bc16acae4d fba754f0467e45ac3862bc2533fb2736 44e65122571dce75bb59a5fb6caba27e c06c5e36ed502ab1c164696edec60426 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
| repository.mail.fl_str_mv |
repositorio.sibi@ufscar.br |
| _version_ |
1851688823326507008 |