Improved parallel algorithm for finding minimum cuts in stochastic flow networks

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: Joshan, Mohammad Sadegh
Orientador(a): Pedrino, Emerson Carlos lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciência da Computação - PPGCC
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://hdl.handle.net/20.500.14289/22521
Resumo: The expansion of information in social networks, bioinformatics, and transportation has resulted in the emergence of enormous graphs with millions or even billions of nodes and edges. Examples include communication networks with stochastic bandwidth, traffic systems with probabilistic congestion, and power grids with uncertain load demand. These scenarios pose unique computational challenges due to their probabilistic nature and dynamic structure. Traditional sequential techniques for identifying minimum cuts in graphs are ineffective in this context, as their time complexity becomes excessively high. This thesis addresses the problem by employing parallel techniques to compute minimum cuts more efficiently on large-scale graphs, leveraging modern parallel computing resources without compromising accuracy. The initial investigation explores state-of-the-art algorithms such as Parallel Push-Relabel and Parallel Karger, which depend on specific hardware and software conditions. The results support the design of the Dynamic Parallel Graph Cuts Algorithm (DPGCA), while also identifying limitations such as inefficient memory usage, limited energy scalability, and poor resource distribution in current parallel implementations.
id SCAR_b14ec24744605c1279b824b6311aecdb
oai_identifier_str oai:repositorio.ufscar.br:20.500.14289/22521
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str
spelling Joshan, Mohammad SadeghPedrino, Emerson Carloshttp://lattes.cnpq.br/6481363465527189https://lattes.cnpq.br/0277215938197917https://orcid.org/0009-0000-5164-3346https://orcid.org/0000-0003-3734-32022025-08-05T12:52:02Z2025-05-27JOSHAN, Mohammad Sadegh. Improved parallel algorithm for finding minimum cuts in stochastic flow networks. 2025. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2025. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/22521.https://hdl.handle.net/20.500.14289/22521The expansion of information in social networks, bioinformatics, and transportation has resulted in the emergence of enormous graphs with millions or even billions of nodes and edges. Examples include communication networks with stochastic bandwidth, traffic systems with probabilistic congestion, and power grids with uncertain load demand. These scenarios pose unique computational challenges due to their probabilistic nature and dynamic structure. Traditional sequential techniques for identifying minimum cuts in graphs are ineffective in this context, as their time complexity becomes excessively high. This thesis addresses the problem by employing parallel techniques to compute minimum cuts more efficiently on large-scale graphs, leveraging modern parallel computing resources without compromising accuracy. The initial investigation explores state-of-the-art algorithms such as Parallel Push-Relabel and Parallel Karger, which depend on specific hardware and software conditions. The results support the design of the Dynamic Parallel Graph Cuts Algorithm (DPGCA), while also identifying limitations such as inefficient memory usage, limited energy scalability, and poor resource distribution in current parallel implementations.A expansão da informação em redes sociais, bioinformática e transporte resultou no surgimento de grafos enormes com milhões ou até bilhões de nós e arestas. Exemplos incluem redes de comunicação com largura de banda estocástica, sistemas de tráfego com congestionamento probabilístico e redes elétricas com demanda de carga incerta. Esses cenários apresentam desafios computacionais únicos devido à sua natureza probabilística e estrutura dinâmica. Técnicas sequenciais tradicionais para identificação de cortes mínimos em grafos tornam-se ineficazes nesse contexto, pois a complexidade de tempo envolvida é excessivamente alta. Esta tese aborda esse problema empregando técnicas paralelas para calcular cortes mínimos de forma mais eficiente em grafos de larga escala, aproveitando recursos modernos de computação paralela sem comprometer a precisão. A investigação inicial explora algoritmos de ponta, como Parallel Push-Relabel e Parallel Karger, que operam sob condições específicas de hardware e software. Os resultados apoiam o desenvolvimento do Algoritmo de Cortes de Grafos Paralelos Dinâmicos (DPGCA), além de identificar limitações como o uso ineficiente de memória, baixa escalabilidade energética e distribuição inadequada de recursos nas implementações paralelas atuais.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)88887.885209/2023-00engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência da Computação - PPGCCUFSCarhttps://ieeexplore.ieee.org/document/10930375Attribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessParallel algorithmsMinimum cutStochastic flow networksNetwork reliabilityGraph partitioningFlow optimizationCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAOAlgoritmos paralelosCorte mínimoRedes de fluxo estocásticoConfiabilidade de redesParticionamento de grafosOtimização de fluxoImproved parallel algorithm for finding minimum cuts in stochastic flow networksAlgoritmo paralelo aprimorado para encontrar cortes mínimos em redes de fluxo estocásticoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALDissertação de Mestrado_Joshan.pdfImproved_Parallel_Algorithm_for_Finding_Minimum_Cuts_in_Stochastic_Flow_Networks__1_.pdfapplication/pdf17184487https://repositorio.ufscar.br/bitstreams/bc35d41e-4c22-4d86-9564-657e1f7d44d6/download2c212d4881d3ba327aba25bc16acae4dMD55trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8906https://repositorio.ufscar.br/bitstreams/1698719c-81cd-44d0-80ec-5a0e6cfa0d4d/downloadfba754f0467e45ac3862bc2533fb2736MD52falseAnonymousREADTEXTDissertação de Mestrado_Joshan.pdf.txtDissertação de Mestrado_Joshan.pdf.txtExtracted texttext/plain101670https://repositorio.ufscar.br/bitstreams/976e2145-e470-4321-8d1a-0cc01e27532d/download44e65122571dce75bb59a5fb6caba27eMD56falseAnonymousREADTHUMBNAILDissertação de Mestrado_Joshan.pdf.jpgDissertação de Mestrado_Joshan.pdf.jpgGenerated Thumbnailimage/jpeg3154https://repositorio.ufscar.br/bitstreams/d75604b7-798f-47c6-8c52-ec7d3fa6f16b/downloadc06c5e36ed502ab1c164696edec60426MD57falseAnonymousREAD20.500.14289/225212025-09-09T16:43:31.418369Zhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/Attribution-NonCommercial-NoDerivs 3.0 Brazilopen.accessoai:repositorio.ufscar.br:20.500.14289/22521https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-09-09T16:43:31Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.eng.fl_str_mv Improved parallel algorithm for finding minimum cuts in stochastic flow networks
dc.title.alternative.por.fl_str_mv Algoritmo paralelo aprimorado para encontrar cortes mínimos em redes de fluxo estocástico
title Improved parallel algorithm for finding minimum cuts in stochastic flow networks
spellingShingle Improved parallel algorithm for finding minimum cuts in stochastic flow networks
Joshan, Mohammad Sadegh
Parallel algorithms
Minimum cut
Stochastic flow networks
Network reliability
Graph partitioning
Flow optimization
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
Algoritmos paralelos
Corte mínimo
Redes de fluxo estocástico
Confiabilidade de redes
Particionamento de grafos
Otimização de fluxo
title_short Improved parallel algorithm for finding minimum cuts in stochastic flow networks
title_full Improved parallel algorithm for finding minimum cuts in stochastic flow networks
title_fullStr Improved parallel algorithm for finding minimum cuts in stochastic flow networks
title_full_unstemmed Improved parallel algorithm for finding minimum cuts in stochastic flow networks
title_sort Improved parallel algorithm for finding minimum cuts in stochastic flow networks
author Joshan, Mohammad Sadegh
author_facet Joshan, Mohammad Sadegh
author_role author
dc.contributor.authorlattes.none.fl_str_mv https://lattes.cnpq.br/0277215938197917
dc.contributor.authororcid.none.fl_str_mv https://orcid.org/0009-0000-5164-3346
dc.contributor.advisor1orcid.none.fl_str_mv https://orcid.org/0000-0003-3734-3202
dc.contributor.author.fl_str_mv Joshan, Mohammad Sadegh
dc.contributor.advisor1.fl_str_mv Pedrino, Emerson Carlos
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/6481363465527189
contributor_str_mv Pedrino, Emerson Carlos
dc.subject.eng.fl_str_mv Parallel algorithms
Minimum cut
Stochastic flow networks
Network reliability
Graph partitioning
Flow optimization
topic Parallel algorithms
Minimum cut
Stochastic flow networks
Network reliability
Graph partitioning
Flow optimization
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
Algoritmos paralelos
Corte mínimo
Redes de fluxo estocástico
Confiabilidade de redes
Particionamento de grafos
Otimização de fluxo
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
dc.subject.por.fl_str_mv Algoritmos paralelos
Corte mínimo
Redes de fluxo estocástico
Confiabilidade de redes
Particionamento de grafos
Otimização de fluxo
description The expansion of information in social networks, bioinformatics, and transportation has resulted in the emergence of enormous graphs with millions or even billions of nodes and edges. Examples include communication networks with stochastic bandwidth, traffic systems with probabilistic congestion, and power grids with uncertain load demand. These scenarios pose unique computational challenges due to their probabilistic nature and dynamic structure. Traditional sequential techniques for identifying minimum cuts in graphs are ineffective in this context, as their time complexity becomes excessively high. This thesis addresses the problem by employing parallel techniques to compute minimum cuts more efficiently on large-scale graphs, leveraging modern parallel computing resources without compromising accuracy. The initial investigation explores state-of-the-art algorithms such as Parallel Push-Relabel and Parallel Karger, which depend on specific hardware and software conditions. The results support the design of the Dynamic Parallel Graph Cuts Algorithm (DPGCA), while also identifying limitations such as inefficient memory usage, limited energy scalability, and poor resource distribution in current parallel implementations.
publishDate 2025
dc.date.accessioned.fl_str_mv 2025-08-05T12:52:02Z
dc.date.issued.fl_str_mv 2025-05-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv JOSHAN, Mohammad Sadegh. Improved parallel algorithm for finding minimum cuts in stochastic flow networks. 2025. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2025. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/22521.
dc.identifier.uri.fl_str_mv https://hdl.handle.net/20.500.14289/22521
identifier_str_mv JOSHAN, Mohammad Sadegh. Improved parallel algorithm for finding minimum cuts in stochastic flow networks. 2025. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2025. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/22521.
url https://hdl.handle.net/20.500.14289/22521
dc.language.iso.fl_str_mv eng
language eng
dc.relation.uri.none.fl_str_mv https://ieeexplore.ieee.org/document/10930375
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência da Computação - PPGCC
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstreams/bc35d41e-4c22-4d86-9564-657e1f7d44d6/download
https://repositorio.ufscar.br/bitstreams/1698719c-81cd-44d0-80ec-5a0e6cfa0d4d/download
https://repositorio.ufscar.br/bitstreams/976e2145-e470-4321-8d1a-0cc01e27532d/download
https://repositorio.ufscar.br/bitstreams/d75604b7-798f-47c6-8c52-ec7d3fa6f16b/download
bitstream.checksum.fl_str_mv 2c212d4881d3ba327aba25bc16acae4d
fba754f0467e45ac3862bc2533fb2736
44e65122571dce75bb59a5fb6caba27e
c06c5e36ed502ab1c164696edec60426
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv repositorio.sibi@ufscar.br
_version_ 1851688823326507008