Interface cérebro-computador para detectar sonolência usando a abordagem de aprendizagem baseada em instâncias

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Jalilifard, Amir
Orientador(a): Pizzolato, Ednaldo Brigante lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciência da Computação - PPGCC
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/10703
Resumo: Brain-Computer Interface (BCI) is a way to establish a communication between brain and computers. It allows the users to control a computer system and even an environment without moving a muscle or it allows the computer to record and analyze the user’s neuropsychological brain activities. Clearly, the range of BCI applications has increased in the past decade due to the use of modern machine learning and signal processing methods. Among various applications of BCI, lately, the use of EEG records for driver safety has been considered by some researchers. Drowsy driving is a major cause of many traffic accidents. The aim of this work is to develop an automatic drowsiness detection system using an efficient k-nearest neighbors (K-NN) algorithm. First, the distribution of power in time-frequency space was obtained using short-time Fourier transform (STFT) and then, the mean value of power during time-segments of 0.5 second was calculated for each EEG sub-band. In addition, standard deviation (SD) and Shanon entropy related to each time-segment were computed from time-domain. Finally, 52 features were extracted. Random forest algorithm was applied over the extracted data, aiming to choose the most informative subset of features. A total of 11 features were selected in order to classify drowsiness and alertness. The Kd-tree algorithm was used as the nearest neighbors search algorithm so as to have a fast classifier. Our experimental results show that drowsiness can be classified efficiently with 91% accuracy using the methods and materials proposed in this paper. We also compared the classification results obtained by K-NN (as an instance-based learning algorithm) with four well-known classifiers including decision tree, support vector machine, logistic regression and Naive Bayes.
id SCAR_ddc39d018c864876d5d66cca56f87d8b
oai_identifier_str oai:repositorio.ufscar.br:20.500.14289/10703
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str
spelling Jalilifard, AmirPizzolato, Ednaldo Brigantehttp://lattes.cnpq.br/2821982735490884http://lattes.cnpq.br/4901451793354227bc47a0e1-6583-46d8-9b23-d5f3e1db2ac52018-11-26T10:47:24Z2018-11-26T10:47:24Z2016-09-26JALILIFARD, Amir. Interface cérebro-computador para detectar sonolência usando a abordagem de aprendizagem baseada em instâncias. 2016. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/10703.https://repositorio.ufscar.br/handle/20.500.14289/10703Brain-Computer Interface (BCI) is a way to establish a communication between brain and computers. It allows the users to control a computer system and even an environment without moving a muscle or it allows the computer to record and analyze the user’s neuropsychological brain activities. Clearly, the range of BCI applications has increased in the past decade due to the use of modern machine learning and signal processing methods. Among various applications of BCI, lately, the use of EEG records for driver safety has been considered by some researchers. Drowsy driving is a major cause of many traffic accidents. The aim of this work is to develop an automatic drowsiness detection system using an efficient k-nearest neighbors (K-NN) algorithm. First, the distribution of power in time-frequency space was obtained using short-time Fourier transform (STFT) and then, the mean value of power during time-segments of 0.5 second was calculated for each EEG sub-band. In addition, standard deviation (SD) and Shanon entropy related to each time-segment were computed from time-domain. Finally, 52 features were extracted. Random forest algorithm was applied over the extracted data, aiming to choose the most informative subset of features. A total of 11 features were selected in order to classify drowsiness and alertness. The Kd-tree algorithm was used as the nearest neighbors search algorithm so as to have a fast classifier. Our experimental results show that drowsiness can be classified efficiently with 91% accuracy using the methods and materials proposed in this paper. We also compared the classification results obtained by K-NN (as an instance-based learning algorithm) with four well-known classifiers including decision tree, support vector machine, logistic regression and Naive Bayes.Uma interface cérebro-computador (ICC, BCI em inglês), também chamada interface mente-máquina (IMM), e também interface neural direta (IND), interface telepática sintética (ITS) ou interface cérebro-máquina, é um caminho comunicativo direto entre o cérebro e um dispositivo externo. Essa cria a possibilidade de usuário controlar um sistema ou um ambiente sem necessidade de usar os músculos. Além disso, a ICC possibilita a gravar e analisar as atividades neuropsicológicas de um indivíduo. Claramente a aplicação da ICC aumentou significativamente durante a década passada. Entre várias aplicações dele, recentemente, pesquisadores tem se interessado em uso dos sinais EEGs na área de segurança ao volante. A condução sonolenta é uma das maiores causas de acidentes nas rodovias do país. Essa pesquisa tem como objetivo o desenvolvimento de um sistema de detecção de sonolência por meio de uma abordagem eficiente baseada em algoritmo K-nearest neighbors (K-NN). Na primeira fase a distribuição de energia dos sinais EEG foi obtida usando uma transformação de Fourier (STFT) e depois o valor médio de energia em períodos de tempo de 0.5 segundos, desvio padrão e entropia Shanon foram calculados para cada das sub-frequências de EEG. Por fim, 52 características foram extraídas. O algoritmo Random Forest foi aplicado nesses dados afim de os atributos mais informativos entre os demais. Finalmente 11 características foram selecionados foram selecionados para classificar a sonolência e o estado de alerta. O algoritmo KD-tree foi utilizado como algoritmo de busca de vizinhos mais próximo para ter um classificador K-NN mais rápido. Nossos resultados mostram que a sonolência pode ser classificada eficientemente com 91% de precisão usando os métodos e materiais propostos neste trabalho.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência da Computação - PPGCCUFSCarBrain computer interfaceEEG classificationDrowsiness detectionK-Nearest neighborsEEG signal processingKd-treesRandom forestFeature selectionCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAOInterface cérebro-computador para detectar sonolência usando a abordagem de aprendizagem baseada em instânciasBrain-computer Interface for detecting drowsiness using instance-based learning approachinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis18 meses após a data da defesa60053d97eba-a4d4-4ce6-8703-1719e038d017info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARLICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstreams/c94a8dba-f843-4814-8ba5-bc9547fea72d/downloadae0398b6f8b235e40ad82cba6c50031dMD58falseAnonymousREADORIGINALJALILIFARD_Amir_2018.pdfJALILIFARD_Amir_2018.pdfapplication/pdf5697098https://repositorio.ufscar.br/bitstreams/dc8b1710-994f-4de5-a22f-3b78bb4b9e2f/download8eab979d72c37722a5c407024b69b02eMD59trueAnonymousREADTEXTJALILIFARD_Amir_2018.pdf.txtJALILIFARD_Amir_2018.pdf.txtExtracted texttext/plain189785https://repositorio.ufscar.br/bitstreams/55de98a8-1324-4936-ac77-160d87098084/downloadedcc964dd7d7dbf972f63f9d35f5c6adMD512falseAnonymousREADTHUMBNAILJALILIFARD_Amir_2018.pdf.jpgJALILIFARD_Amir_2018.pdf.jpgIM Thumbnailimage/jpeg1428https://repositorio.ufscar.br/bitstreams/d709bfa2-3a95-426f-b16e-a57dbfc9b214/download1bfcd162fd2fa0b62c7898e7c2c7a0eaMD513falseAnonymousREAD20.500.14289/107032025-02-05 17:55:56.227Acesso abertoopen.accessoai:repositorio.ufscar.br:20.500.14289/10703https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T20:55:56Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==
dc.title.por.fl_str_mv Interface cérebro-computador para detectar sonolência usando a abordagem de aprendizagem baseada em instâncias
dc.title.alternative.eng.fl_str_mv Brain-computer Interface for detecting drowsiness using instance-based learning approach
title Interface cérebro-computador para detectar sonolência usando a abordagem de aprendizagem baseada em instâncias
spellingShingle Interface cérebro-computador para detectar sonolência usando a abordagem de aprendizagem baseada em instâncias
Jalilifard, Amir
Brain computer interface
EEG classification
Drowsiness detection
K-Nearest neighbors
EEG signal processing
Kd-trees
Random forest
Feature selection
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO
title_short Interface cérebro-computador para detectar sonolência usando a abordagem de aprendizagem baseada em instâncias
title_full Interface cérebro-computador para detectar sonolência usando a abordagem de aprendizagem baseada em instâncias
title_fullStr Interface cérebro-computador para detectar sonolência usando a abordagem de aprendizagem baseada em instâncias
title_full_unstemmed Interface cérebro-computador para detectar sonolência usando a abordagem de aprendizagem baseada em instâncias
title_sort Interface cérebro-computador para detectar sonolência usando a abordagem de aprendizagem baseada em instâncias
author Jalilifard, Amir
author_facet Jalilifard, Amir
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/4901451793354227
dc.contributor.author.fl_str_mv Jalilifard, Amir
dc.contributor.advisor1.fl_str_mv Pizzolato, Ednaldo Brigante
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/2821982735490884
dc.contributor.authorID.fl_str_mv bc47a0e1-6583-46d8-9b23-d5f3e1db2ac5
contributor_str_mv Pizzolato, Ednaldo Brigante
dc.subject.eng.fl_str_mv Brain computer interface
EEG classification
Drowsiness detection
K-Nearest neighbors
EEG signal processing
Kd-trees
Random forest
Feature selection
topic Brain computer interface
EEG classification
Drowsiness detection
K-Nearest neighbors
EEG signal processing
Kd-trees
Random forest
Feature selection
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO
description Brain-Computer Interface (BCI) is a way to establish a communication between brain and computers. It allows the users to control a computer system and even an environment without moving a muscle or it allows the computer to record and analyze the user’s neuropsychological brain activities. Clearly, the range of BCI applications has increased in the past decade due to the use of modern machine learning and signal processing methods. Among various applications of BCI, lately, the use of EEG records for driver safety has been considered by some researchers. Drowsy driving is a major cause of many traffic accidents. The aim of this work is to develop an automatic drowsiness detection system using an efficient k-nearest neighbors (K-NN) algorithm. First, the distribution of power in time-frequency space was obtained using short-time Fourier transform (STFT) and then, the mean value of power during time-segments of 0.5 second was calculated for each EEG sub-band. In addition, standard deviation (SD) and Shanon entropy related to each time-segment were computed from time-domain. Finally, 52 features were extracted. Random forest algorithm was applied over the extracted data, aiming to choose the most informative subset of features. A total of 11 features were selected in order to classify drowsiness and alertness. The Kd-tree algorithm was used as the nearest neighbors search algorithm so as to have a fast classifier. Our experimental results show that drowsiness can be classified efficiently with 91% accuracy using the methods and materials proposed in this paper. We also compared the classification results obtained by K-NN (as an instance-based learning algorithm) with four well-known classifiers including decision tree, support vector machine, logistic regression and Naive Bayes.
publishDate 2016
dc.date.issued.fl_str_mv 2016-09-26
dc.date.accessioned.fl_str_mv 2018-11-26T10:47:24Z
dc.date.available.fl_str_mv 2018-11-26T10:47:24Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv JALILIFARD, Amir. Interface cérebro-computador para detectar sonolência usando a abordagem de aprendizagem baseada em instâncias. 2016. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/10703.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/20.500.14289/10703
identifier_str_mv JALILIFARD, Amir. Interface cérebro-computador para detectar sonolência usando a abordagem de aprendizagem baseada em instâncias. 2016. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/10703.
url https://repositorio.ufscar.br/handle/20.500.14289/10703
dc.language.iso.fl_str_mv eng
language eng
dc.relation.confidence.fl_str_mv 600
dc.relation.authority.fl_str_mv 53d97eba-a4d4-4ce6-8703-1719e038d017
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência da Computação - PPGCC
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstreams/c94a8dba-f843-4814-8ba5-bc9547fea72d/download
https://repositorio.ufscar.br/bitstreams/dc8b1710-994f-4de5-a22f-3b78bb4b9e2f/download
https://repositorio.ufscar.br/bitstreams/55de98a8-1324-4936-ac77-160d87098084/download
https://repositorio.ufscar.br/bitstreams/d709bfa2-3a95-426f-b16e-a57dbfc9b214/download
bitstream.checksum.fl_str_mv ae0398b6f8b235e40ad82cba6c50031d
8eab979d72c37722a5c407024b69b02e
edcc964dd7d7dbf972f63f9d35f5c6ad
1bfcd162fd2fa0b62c7898e7c2c7a0ea
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv repositorio.sibi@ufscar.br
_version_ 1851688777907437568