Interface cérebro-computador para detectar sonolência usando a abordagem de aprendizagem baseada em instâncias
| Ano de defesa: | 2016 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de São Carlos
Câmpus São Carlos |
| Programa de Pós-Graduação: |
Programa de Pós-Graduação em Ciência da Computação - PPGCC
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://repositorio.ufscar.br/handle/20.500.14289/10703 |
Resumo: | Brain-Computer Interface (BCI) is a way to establish a communication between brain and computers. It allows the users to control a computer system and even an environment without moving a muscle or it allows the computer to record and analyze the user’s neuropsychological brain activities. Clearly, the range of BCI applications has increased in the past decade due to the use of modern machine learning and signal processing methods. Among various applications of BCI, lately, the use of EEG records for driver safety has been considered by some researchers. Drowsy driving is a major cause of many traffic accidents. The aim of this work is to develop an automatic drowsiness detection system using an efficient k-nearest neighbors (K-NN) algorithm. First, the distribution of power in time-frequency space was obtained using short-time Fourier transform (STFT) and then, the mean value of power during time-segments of 0.5 second was calculated for each EEG sub-band. In addition, standard deviation (SD) and Shanon entropy related to each time-segment were computed from time-domain. Finally, 52 features were extracted. Random forest algorithm was applied over the extracted data, aiming to choose the most informative subset of features. A total of 11 features were selected in order to classify drowsiness and alertness. The Kd-tree algorithm was used as the nearest neighbors search algorithm so as to have a fast classifier. Our experimental results show that drowsiness can be classified efficiently with 91% accuracy using the methods and materials proposed in this paper. We also compared the classification results obtained by K-NN (as an instance-based learning algorithm) with four well-known classifiers including decision tree, support vector machine, logistic regression and Naive Bayes. |
| id |
SCAR_ddc39d018c864876d5d66cca56f87d8b |
|---|---|
| oai_identifier_str |
oai:repositorio.ufscar.br:20.500.14289/10703 |
| network_acronym_str |
SCAR |
| network_name_str |
Repositório Institucional da UFSCAR |
| repository_id_str |
|
| spelling |
Jalilifard, AmirPizzolato, Ednaldo Brigantehttp://lattes.cnpq.br/2821982735490884http://lattes.cnpq.br/4901451793354227bc47a0e1-6583-46d8-9b23-d5f3e1db2ac52018-11-26T10:47:24Z2018-11-26T10:47:24Z2016-09-26JALILIFARD, Amir. Interface cérebro-computador para detectar sonolência usando a abordagem de aprendizagem baseada em instâncias. 2016. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/10703.https://repositorio.ufscar.br/handle/20.500.14289/10703Brain-Computer Interface (BCI) is a way to establish a communication between brain and computers. It allows the users to control a computer system and even an environment without moving a muscle or it allows the computer to record and analyze the user’s neuropsychological brain activities. Clearly, the range of BCI applications has increased in the past decade due to the use of modern machine learning and signal processing methods. Among various applications of BCI, lately, the use of EEG records for driver safety has been considered by some researchers. Drowsy driving is a major cause of many traffic accidents. The aim of this work is to develop an automatic drowsiness detection system using an efficient k-nearest neighbors (K-NN) algorithm. First, the distribution of power in time-frequency space was obtained using short-time Fourier transform (STFT) and then, the mean value of power during time-segments of 0.5 second was calculated for each EEG sub-band. In addition, standard deviation (SD) and Shanon entropy related to each time-segment were computed from time-domain. Finally, 52 features were extracted. Random forest algorithm was applied over the extracted data, aiming to choose the most informative subset of features. A total of 11 features were selected in order to classify drowsiness and alertness. The Kd-tree algorithm was used as the nearest neighbors search algorithm so as to have a fast classifier. Our experimental results show that drowsiness can be classified efficiently with 91% accuracy using the methods and materials proposed in this paper. We also compared the classification results obtained by K-NN (as an instance-based learning algorithm) with four well-known classifiers including decision tree, support vector machine, logistic regression and Naive Bayes.Uma interface cérebro-computador (ICC, BCI em inglês), também chamada interface mente-máquina (IMM), e também interface neural direta (IND), interface telepática sintética (ITS) ou interface cérebro-máquina, é um caminho comunicativo direto entre o cérebro e um dispositivo externo. Essa cria a possibilidade de usuário controlar um sistema ou um ambiente sem necessidade de usar os músculos. Além disso, a ICC possibilita a gravar e analisar as atividades neuropsicológicas de um indivíduo. Claramente a aplicação da ICC aumentou significativamente durante a década passada. Entre várias aplicações dele, recentemente, pesquisadores tem se interessado em uso dos sinais EEGs na área de segurança ao volante. A condução sonolenta é uma das maiores causas de acidentes nas rodovias do país. Essa pesquisa tem como objetivo o desenvolvimento de um sistema de detecção de sonolência por meio de uma abordagem eficiente baseada em algoritmo K-nearest neighbors (K-NN). Na primeira fase a distribuição de energia dos sinais EEG foi obtida usando uma transformação de Fourier (STFT) e depois o valor médio de energia em períodos de tempo de 0.5 segundos, desvio padrão e entropia Shanon foram calculados para cada das sub-frequências de EEG. Por fim, 52 características foram extraídas. O algoritmo Random Forest foi aplicado nesses dados afim de os atributos mais informativos entre os demais. Finalmente 11 características foram selecionados foram selecionados para classificar a sonolência e o estado de alerta. O algoritmo KD-tree foi utilizado como algoritmo de busca de vizinhos mais próximo para ter um classificador K-NN mais rápido. Nossos resultados mostram que a sonolência pode ser classificada eficientemente com 91% de precisão usando os métodos e materiais propostos neste trabalho.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência da Computação - PPGCCUFSCarBrain computer interfaceEEG classificationDrowsiness detectionK-Nearest neighborsEEG signal processingKd-treesRandom forestFeature selectionCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAOInterface cérebro-computador para detectar sonolência usando a abordagem de aprendizagem baseada em instânciasBrain-computer Interface for detecting drowsiness using instance-based learning approachinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis18 meses após a data da defesa60053d97eba-a4d4-4ce6-8703-1719e038d017info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARLICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstreams/c94a8dba-f843-4814-8ba5-bc9547fea72d/downloadae0398b6f8b235e40ad82cba6c50031dMD58falseAnonymousREADORIGINALJALILIFARD_Amir_2018.pdfJALILIFARD_Amir_2018.pdfapplication/pdf5697098https://repositorio.ufscar.br/bitstreams/dc8b1710-994f-4de5-a22f-3b78bb4b9e2f/download8eab979d72c37722a5c407024b69b02eMD59trueAnonymousREADTEXTJALILIFARD_Amir_2018.pdf.txtJALILIFARD_Amir_2018.pdf.txtExtracted texttext/plain189785https://repositorio.ufscar.br/bitstreams/55de98a8-1324-4936-ac77-160d87098084/downloadedcc964dd7d7dbf972f63f9d35f5c6adMD512falseAnonymousREADTHUMBNAILJALILIFARD_Amir_2018.pdf.jpgJALILIFARD_Amir_2018.pdf.jpgIM Thumbnailimage/jpeg1428https://repositorio.ufscar.br/bitstreams/d709bfa2-3a95-426f-b16e-a57dbfc9b214/download1bfcd162fd2fa0b62c7898e7c2c7a0eaMD513falseAnonymousREAD20.500.14289/107032025-02-05 17:55:56.227Acesso abertoopen.accessoai:repositorio.ufscar.br:20.500.14289/10703https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T20:55:56Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg== |
| dc.title.por.fl_str_mv |
Interface cérebro-computador para detectar sonolência usando a abordagem de aprendizagem baseada em instâncias |
| dc.title.alternative.eng.fl_str_mv |
Brain-computer Interface for detecting drowsiness using instance-based learning approach |
| title |
Interface cérebro-computador para detectar sonolência usando a abordagem de aprendizagem baseada em instâncias |
| spellingShingle |
Interface cérebro-computador para detectar sonolência usando a abordagem de aprendizagem baseada em instâncias Jalilifard, Amir Brain computer interface EEG classification Drowsiness detection K-Nearest neighbors EEG signal processing Kd-trees Random forest Feature selection CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO |
| title_short |
Interface cérebro-computador para detectar sonolência usando a abordagem de aprendizagem baseada em instâncias |
| title_full |
Interface cérebro-computador para detectar sonolência usando a abordagem de aprendizagem baseada em instâncias |
| title_fullStr |
Interface cérebro-computador para detectar sonolência usando a abordagem de aprendizagem baseada em instâncias |
| title_full_unstemmed |
Interface cérebro-computador para detectar sonolência usando a abordagem de aprendizagem baseada em instâncias |
| title_sort |
Interface cérebro-computador para detectar sonolência usando a abordagem de aprendizagem baseada em instâncias |
| author |
Jalilifard, Amir |
| author_facet |
Jalilifard, Amir |
| author_role |
author |
| dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/4901451793354227 |
| dc.contributor.author.fl_str_mv |
Jalilifard, Amir |
| dc.contributor.advisor1.fl_str_mv |
Pizzolato, Ednaldo Brigante |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/2821982735490884 |
| dc.contributor.authorID.fl_str_mv |
bc47a0e1-6583-46d8-9b23-d5f3e1db2ac5 |
| contributor_str_mv |
Pizzolato, Ednaldo Brigante |
| dc.subject.eng.fl_str_mv |
Brain computer interface EEG classification Drowsiness detection K-Nearest neighbors EEG signal processing Kd-trees Random forest Feature selection |
| topic |
Brain computer interface EEG classification Drowsiness detection K-Nearest neighbors EEG signal processing Kd-trees Random forest Feature selection CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO |
| dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO |
| description |
Brain-Computer Interface (BCI) is a way to establish a communication between brain and computers. It allows the users to control a computer system and even an environment without moving a muscle or it allows the computer to record and analyze the user’s neuropsychological brain activities. Clearly, the range of BCI applications has increased in the past decade due to the use of modern machine learning and signal processing methods. Among various applications of BCI, lately, the use of EEG records for driver safety has been considered by some researchers. Drowsy driving is a major cause of many traffic accidents. The aim of this work is to develop an automatic drowsiness detection system using an efficient k-nearest neighbors (K-NN) algorithm. First, the distribution of power in time-frequency space was obtained using short-time Fourier transform (STFT) and then, the mean value of power during time-segments of 0.5 second was calculated for each EEG sub-band. In addition, standard deviation (SD) and Shanon entropy related to each time-segment were computed from time-domain. Finally, 52 features were extracted. Random forest algorithm was applied over the extracted data, aiming to choose the most informative subset of features. A total of 11 features were selected in order to classify drowsiness and alertness. The Kd-tree algorithm was used as the nearest neighbors search algorithm so as to have a fast classifier. Our experimental results show that drowsiness can be classified efficiently with 91% accuracy using the methods and materials proposed in this paper. We also compared the classification results obtained by K-NN (as an instance-based learning algorithm) with four well-known classifiers including decision tree, support vector machine, logistic regression and Naive Bayes. |
| publishDate |
2016 |
| dc.date.issued.fl_str_mv |
2016-09-26 |
| dc.date.accessioned.fl_str_mv |
2018-11-26T10:47:24Z |
| dc.date.available.fl_str_mv |
2018-11-26T10:47:24Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
JALILIFARD, Amir. Interface cérebro-computador para detectar sonolência usando a abordagem de aprendizagem baseada em instâncias. 2016. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/10703. |
| dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/20.500.14289/10703 |
| identifier_str_mv |
JALILIFARD, Amir. Interface cérebro-computador para detectar sonolência usando a abordagem de aprendizagem baseada em instâncias. 2016. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/10703. |
| url |
https://repositorio.ufscar.br/handle/20.500.14289/10703 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.confidence.fl_str_mv |
600 |
| dc.relation.authority.fl_str_mv |
53d97eba-a4d4-4ce6-8703-1719e038d017 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Ciência da Computação - PPGCC |
| dc.publisher.initials.fl_str_mv |
UFSCar |
| publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
| instname_str |
Universidade Federal de São Carlos (UFSCAR) |
| instacron_str |
UFSCAR |
| institution |
UFSCAR |
| reponame_str |
Repositório Institucional da UFSCAR |
| collection |
Repositório Institucional da UFSCAR |
| bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstreams/c94a8dba-f843-4814-8ba5-bc9547fea72d/download https://repositorio.ufscar.br/bitstreams/dc8b1710-994f-4de5-a22f-3b78bb4b9e2f/download https://repositorio.ufscar.br/bitstreams/55de98a8-1324-4936-ac77-160d87098084/download https://repositorio.ufscar.br/bitstreams/d709bfa2-3a95-426f-b16e-a57dbfc9b214/download |
| bitstream.checksum.fl_str_mv |
ae0398b6f8b235e40ad82cba6c50031d 8eab979d72c37722a5c407024b69b02e edcc964dd7d7dbf972f63f9d35f5c6ad 1bfcd162fd2fa0b62c7898e7c2c7a0ea |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
| repository.mail.fl_str_mv |
repositorio.sibi@ufscar.br |
| _version_ |
1851688777907437568 |