Inteligência computacional aplicada à modelagem e otimização de bioprocessos
| Ano de defesa: | 2016 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de São Carlos
Câmpus São Carlos |
| Programa de Pós-Graduação: |
Programa de Pós-Graduação em Engenharia Química - PPGEQ
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://repositorio.ufscar.br/handle/20.500.14289/8771 |
Resumo: | This work deals with modeling applications, systematic and reliable optimization methodologies of global search, and other computational tools. It is expected that existing computational intelligence methods, encoded in an appropriate tool for the application of process engineering assisted by computer, can lead to useful numerical results for the modeling and optimization of different processes, including biotechnological processes (focus of this work). Thus, different types of methodologies suitable for computer applications, were studied here. The proposed methodologies were implemented and evaluated for the development and optimization of culture media for the fermentation process of Clostridium novyi type B, besides the fermentation process and enzymatic hydrolysis of bagasse associated with the production of bioethanol (1G and 2G). Thus, the potential application of these computational techniques was evaluated to biotechnological systems in different approaches. More specifically, it was performed: Classification of biotechnological systems ( "clustering") in kinetically similar regions to produce cellulosic ethanol (2G ethanol) using fuzzy logic; estimation by global search of kinetic parameters to an alcoholic fermentation model using Simmulated Annealing algorithm (SA) (Contributions to the thematic project FAPESP 2011 / 51902-9); formulation and optimization of economically viable culture media for Clostridium novyi type B using neuro-fuzzy data modeling followed by global search which maximize productivity, also utilizing SA algorithm as a search engine (this step of the project was conducted in partnership with the veterinary pharmaceutical company Vallée SA). The computational tools presented in this work were highly effective for modeling and optimization of the bioprocesses studied. |
| id |
SCAR_e31385b6434fa49c5806f767722c8b8c |
|---|---|
| oai_identifier_str |
oai:repositorio.ufscar.br:20.500.14289/8771 |
| network_acronym_str |
SCAR |
| network_name_str |
Repositório Institucional da UFSCAR |
| repository_id_str |
|
| spelling |
Aquino, Pedro Luiz da Mota eSousa Júnior, Ruy dehttp://lattes.cnpq.br/1983482879541203Giordano, Roberto de Camposhttp://lattes.cnpq.br/0834668419587001http://lattes.cnpq.br/49214624217603692380d2ba-9b79-4ccb-9d93-0e85f0b2a3d02017-05-25T14:21:19Z2017-05-25T14:21:19Z2016-04-29AQUINO, Pedro Luiz da Mota e. Inteligência computacional aplicada à modelagem e otimização de bioprocessos. 2016. Tese (Doutorado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/8771.https://repositorio.ufscar.br/handle/20.500.14289/8771This work deals with modeling applications, systematic and reliable optimization methodologies of global search, and other computational tools. It is expected that existing computational intelligence methods, encoded in an appropriate tool for the application of process engineering assisted by computer, can lead to useful numerical results for the modeling and optimization of different processes, including biotechnological processes (focus of this work). Thus, different types of methodologies suitable for computer applications, were studied here. The proposed methodologies were implemented and evaluated for the development and optimization of culture media for the fermentation process of Clostridium novyi type B, besides the fermentation process and enzymatic hydrolysis of bagasse associated with the production of bioethanol (1G and 2G). Thus, the potential application of these computational techniques was evaluated to biotechnological systems in different approaches. More specifically, it was performed: Classification of biotechnological systems ( "clustering") in kinetically similar regions to produce cellulosic ethanol (2G ethanol) using fuzzy logic; estimation by global search of kinetic parameters to an alcoholic fermentation model using Simmulated Annealing algorithm (SA) (Contributions to the thematic project FAPESP 2011 / 51902-9); formulation and optimization of economically viable culture media for Clostridium novyi type B using neuro-fuzzy data modeling followed by global search which maximize productivity, also utilizing SA algorithm as a search engine (this step of the project was conducted in partnership with the veterinary pharmaceutical company Vallée SA). The computational tools presented in this work were highly effective for modeling and optimization of the bioprocesses studied.Este trabalho aborda aplicações de modelagem, metodologias sistemáticas e confiáveis de otimização por busca global, além de outras ferramentas computacionais. Espera-se que métodos de inteligência computacional existentes, codificados em uma ferramenta apropriada para a aplicação da engenharia de processos assistida por computador, resultem em resultados numéricos úteis para a modelagem e otimização de diferentes processos, incluindo-se os processos biotecnológicos (foco deste trabalho). Assim, diferentes tipos de metodologias, apropriadas para aplicações em computador, foram aqui estudadas. Os métodos propostos foram aplicados e avaliados ao desenvolvimento e otimização de meios de cultura para o processo fermentativo do microrganismo Clostridium novyi tipo B, além dos processos de fermentação alcoólica e hidrolise enzimática de bagaço de cana, associados à produção de bioetanol (1G e 2G). Desta forma, foi avaliado o potencial de aplicação destas técnicas computacionais aos sistemas biotecnológicos, em diversas abordagens. Mais especificamente, foram realizadas: classificação (“clustering”) de sistemas em regiões cineticamente semelhantes para a produção de etanol celulósico (Etanol 2G) utilizando lógica Fuzzy; estimação por busca global de parâmetros cinéticos do modelo para uma fermentação alcoólica utilizando o algoritmo Simmulated Annealing (SA) (Contribuições ao projeto temático FAPESP 2011/51902-9); formulação e otimização do meio de cultura economicamente viável para o Clostridium novyi tipo B utilizando a modelagem de dados por neuro-fuzzy seguido de busca global da composição de meio que maximize a produtividade utilizando também o algoritmo SA como ferramenta de busca global (esta etapa do projeto foi realizado em parceria com a empresa farmacêutica veterinária Vallée S.A). As ferramentas computacionais apresentadas neste trabalho se mostraram altamente efetivas para a modelagem e otimização dos bioprocessos estudados."Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FAPESP: 2011/51902-9.FAPESP: 2008/56246-0.porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Engenharia Química - PPGEQUFSCarInteligência computacionalLógica FuzzyRedes neuraisNeuro-FuzzyBioprocessosEstimativa de parâmetrosModelagemComputational intelligenceFuzzy logicSimmulated annealingNeural networksBioprocessesParameter estimationModelingENGENHARIAS::ENGENHARIA QUIMICAInteligência computacional aplicada à modelagem e otimização de bioprocessosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnline600600ab69fa78-14aa-4e78-beb8-e23c9aefadecinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTesePLMA.pdfTesePLMA.pdfapplication/pdf8101922https://repositorio.ufscar.br/bitstreams/4b0be82d-1e9a-4b5c-9282-1cf64de507ba/download456faa861edf6a27b2e7de9a7a271429MD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstreams/b8bef3f9-d689-4e81-b8b6-f059b3dcd807/downloadae0398b6f8b235e40ad82cba6c50031dMD52falseAnonymousREADTEXTTesePLMA.pdf.txtTesePLMA.pdf.txtExtracted texttext/plain222787https://repositorio.ufscar.br/bitstreams/e9d2aa1c-390d-4df4-a85f-cde773c52902/download3c6a34926d27aac29d19a168c29a7aa7MD55falseAnonymousREADTHUMBNAILTesePLMA.pdf.jpgTesePLMA.pdf.jpgIM Thumbnailimage/jpeg5974https://repositorio.ufscar.br/bitstreams/fe609c42-110f-406a-9c6a-cbbb1d6f334b/download8904de0a1e535bf25d760d76b523620bMD56falseAnonymousREAD20.500.14289/87712025-02-05 18:58:00.513Acesso abertoopen.accessoai:repositorio.ufscar.br:20.500.14289/8771https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T21:58Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg== |
| dc.title.por.fl_str_mv |
Inteligência computacional aplicada à modelagem e otimização de bioprocessos |
| title |
Inteligência computacional aplicada à modelagem e otimização de bioprocessos |
| spellingShingle |
Inteligência computacional aplicada à modelagem e otimização de bioprocessos Aquino, Pedro Luiz da Mota e Inteligência computacional Lógica Fuzzy Redes neurais Neuro-Fuzzy Bioprocessos Estimativa de parâmetros Modelagem Computational intelligence Fuzzy logic Simmulated annealing Neural networks Bioprocesses Parameter estimation Modeling ENGENHARIAS::ENGENHARIA QUIMICA |
| title_short |
Inteligência computacional aplicada à modelagem e otimização de bioprocessos |
| title_full |
Inteligência computacional aplicada à modelagem e otimização de bioprocessos |
| title_fullStr |
Inteligência computacional aplicada à modelagem e otimização de bioprocessos |
| title_full_unstemmed |
Inteligência computacional aplicada à modelagem e otimização de bioprocessos |
| title_sort |
Inteligência computacional aplicada à modelagem e otimização de bioprocessos |
| author |
Aquino, Pedro Luiz da Mota e |
| author_facet |
Aquino, Pedro Luiz da Mota e |
| author_role |
author |
| dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/4921462421760369 |
| dc.contributor.author.fl_str_mv |
Aquino, Pedro Luiz da Mota e |
| dc.contributor.advisor1.fl_str_mv |
Sousa Júnior, Ruy de |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/1983482879541203 |
| dc.contributor.advisor-co1.fl_str_mv |
Giordano, Roberto de Campos |
| dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/0834668419587001 |
| dc.contributor.authorID.fl_str_mv |
2380d2ba-9b79-4ccb-9d93-0e85f0b2a3d0 |
| contributor_str_mv |
Sousa Júnior, Ruy de Giordano, Roberto de Campos |
| dc.subject.por.fl_str_mv |
Inteligência computacional Lógica Fuzzy Redes neurais Neuro-Fuzzy Bioprocessos Estimativa de parâmetros Modelagem |
| topic |
Inteligência computacional Lógica Fuzzy Redes neurais Neuro-Fuzzy Bioprocessos Estimativa de parâmetros Modelagem Computational intelligence Fuzzy logic Simmulated annealing Neural networks Bioprocesses Parameter estimation Modeling ENGENHARIAS::ENGENHARIA QUIMICA |
| dc.subject.eng.fl_str_mv |
Computational intelligence Fuzzy logic Simmulated annealing Neural networks Bioprocesses Parameter estimation Modeling |
| dc.subject.cnpq.fl_str_mv |
ENGENHARIAS::ENGENHARIA QUIMICA |
| description |
This work deals with modeling applications, systematic and reliable optimization methodologies of global search, and other computational tools. It is expected that existing computational intelligence methods, encoded in an appropriate tool for the application of process engineering assisted by computer, can lead to useful numerical results for the modeling and optimization of different processes, including biotechnological processes (focus of this work). Thus, different types of methodologies suitable for computer applications, were studied here. The proposed methodologies were implemented and evaluated for the development and optimization of culture media for the fermentation process of Clostridium novyi type B, besides the fermentation process and enzymatic hydrolysis of bagasse associated with the production of bioethanol (1G and 2G). Thus, the potential application of these computational techniques was evaluated to biotechnological systems in different approaches. More specifically, it was performed: Classification of biotechnological systems ( "clustering") in kinetically similar regions to produce cellulosic ethanol (2G ethanol) using fuzzy logic; estimation by global search of kinetic parameters to an alcoholic fermentation model using Simmulated Annealing algorithm (SA) (Contributions to the thematic project FAPESP 2011 / 51902-9); formulation and optimization of economically viable culture media for Clostridium novyi type B using neuro-fuzzy data modeling followed by global search which maximize productivity, also utilizing SA algorithm as a search engine (this step of the project was conducted in partnership with the veterinary pharmaceutical company Vallée SA). The computational tools presented in this work were highly effective for modeling and optimization of the bioprocesses studied. |
| publishDate |
2016 |
| dc.date.issued.fl_str_mv |
2016-04-29 |
| dc.date.accessioned.fl_str_mv |
2017-05-25T14:21:19Z |
| dc.date.available.fl_str_mv |
2017-05-25T14:21:19Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
AQUINO, Pedro Luiz da Mota e. Inteligência computacional aplicada à modelagem e otimização de bioprocessos. 2016. Tese (Doutorado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/8771. |
| dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/20.500.14289/8771 |
| identifier_str_mv |
AQUINO, Pedro Luiz da Mota e. Inteligência computacional aplicada à modelagem e otimização de bioprocessos. 2016. Tese (Doutorado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/8771. |
| url |
https://repositorio.ufscar.br/handle/20.500.14289/8771 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.confidence.fl_str_mv |
600 600 |
| dc.relation.authority.fl_str_mv |
ab69fa78-14aa-4e78-beb8-e23c9aefadec |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Química - PPGEQ |
| dc.publisher.initials.fl_str_mv |
UFSCar |
| publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
| instname_str |
Universidade Federal de São Carlos (UFSCAR) |
| instacron_str |
UFSCAR |
| institution |
UFSCAR |
| reponame_str |
Repositório Institucional da UFSCAR |
| collection |
Repositório Institucional da UFSCAR |
| bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstreams/4b0be82d-1e9a-4b5c-9282-1cf64de507ba/download https://repositorio.ufscar.br/bitstreams/b8bef3f9-d689-4e81-b8b6-f059b3dcd807/download https://repositorio.ufscar.br/bitstreams/e9d2aa1c-390d-4df4-a85f-cde773c52902/download https://repositorio.ufscar.br/bitstreams/fe609c42-110f-406a-9c6a-cbbb1d6f334b/download |
| bitstream.checksum.fl_str_mv |
456faa861edf6a27b2e7de9a7a271429 ae0398b6f8b235e40ad82cba6c50031d 3c6a34926d27aac29d19a168c29a7aa7 8904de0a1e535bf25d760d76b523620b |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
| repository.mail.fl_str_mv |
repositorio.sibi@ufscar.br |
| _version_ |
1851688923953102848 |