Redes neurais artificiais na predição do tempo de armazenamento de grãos de feijão

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Farias, Hiago Felipe Lopes de lattes
Orientador(a): Devilla, Ivano Alessandro lattes
Banca de defesa: Devilla, Ivano Alessandro, Melo, Francisco Ramos de, Resende, Osvaldo
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual de Goiás
Programa de Pós-Graduação: Programa de Pós-Graduação Stricto sensu em Engenharia Agrícola
Departamento: UEG ::Coordenação de Mestrado em Engenharia Agrícola
País: Brasil
Palavras-chave em Português:
RNA
Palavras-chave em Inglês:
ANN
Área do conhecimento CNPq:
Link de acesso: http://www.bdtd.ueg.br/handle/tede/730
Resumo: Bean is a widely cultivated crop in Brazil and the world. In the period of storage of grains, deterioration of the product occurs, which is gradual, irreversible and cumulative. Artificial Neural Networks (ANNs) have been used in a wide range of applications, such as: standard classification, recognition pattern, optimization, prediction and automatic control. In some cases, ANNs have performed better than the regression models. In the light of the above, this work aimed to evaluate the performance of artificial neural networks in predicting the storage time of bean grains as a function of color, tegument hardness and different temperatures. The grains were produced and stored by Embrapa Rice e Beans, located in the municipality of Santo Antônio de Goiás, harvest 2013/2014. Five groups of carioca bean cultivars with water content of 13% b.u. in the year 2014, the samples were stored in a Biochemical Oxygen Demand (BOD) type chamber, at temperatures (15, 21 and 37 ° C). Grain samples were collected at (36, 72, 108, 144 and 180) days of storage and staining and hardness evaluations of the tegument of the grains. The first evaluation was performed with the grains freshly harvested in the year 2014, identified as control samples. Data were normalized between -1 to 1, the trained networks were of the Multilayer Perceptron (MLP) type, after the training was selected the network that presented better performance to solve the problem. The best RNA had a success rate of 83.0% with training data and 91.2% with validation data, presented a correlation higher than 0.900 for training, validation and testing. Under the conditions in which this work was developed it can be concluded that RNAs can be used to estimate storage days as a function of color, hardness and temperature.
id UEG-2_569b0fb609094dd53a020a2a2e1b6242
oai_identifier_str oai:tede2:tede/730
network_acronym_str UEG-2
network_name_str Biblioteca Digital Brasileira de Teses e Dissertações da UEG
repository_id_str
spelling Devilla, Ivano Alessandrohttp://lattes.cnpq.br/6427301186294340Devilla, Ivano AlessandroMelo, Francisco Ramos deResende, Osvaldohttp://lattes.cnpq.br/9282890888306296Farias, Hiago Felipe Lopes de2021-07-02T17:48:13Z2018-06-28FARIAS, H. F. L. Redes neurais artificiais na predição do tempo de armazenamento de grãos de feijão. 2018. 65 f. Dissertação (Mestrado em Engenharia Agrícola) - Câmpus Central - Sede: Anápolis - CET, Universidade Estadual de Goiás, Anápolis-GO.http://www.bdtd.ueg.br/handle/tede/730Bean is a widely cultivated crop in Brazil and the world. In the period of storage of grains, deterioration of the product occurs, which is gradual, irreversible and cumulative. Artificial Neural Networks (ANNs) have been used in a wide range of applications, such as: standard classification, recognition pattern, optimization, prediction and automatic control. In some cases, ANNs have performed better than the regression models. In the light of the above, this work aimed to evaluate the performance of artificial neural networks in predicting the storage time of bean grains as a function of color, tegument hardness and different temperatures. The grains were produced and stored by Embrapa Rice e Beans, located in the municipality of Santo Antônio de Goiás, harvest 2013/2014. Five groups of carioca bean cultivars with water content of 13% b.u. in the year 2014, the samples were stored in a Biochemical Oxygen Demand (BOD) type chamber, at temperatures (15, 21 and 37 ° C). Grain samples were collected at (36, 72, 108, 144 and 180) days of storage and staining and hardness evaluations of the tegument of the grains. The first evaluation was performed with the grains freshly harvested in the year 2014, identified as control samples. Data were normalized between -1 to 1, the trained networks were of the Multilayer Perceptron (MLP) type, after the training was selected the network that presented better performance to solve the problem. The best RNA had a success rate of 83.0% with training data and 91.2% with validation data, presented a correlation higher than 0.900 for training, validation and testing. Under the conditions in which this work was developed it can be concluded that RNAs can be used to estimate storage days as a function of color, hardness and temperature.O feijão é uma cultura amplamente cultivada no Brasil e no mundo. No período da armazenagem dos grãos, ocorre a deterioração do produto, que é gradativa, irreversível e acumulativa. As Redes Neurais Artificiais (RNAs) têm sido utilizadas numa larga gama de aplicações, tais como: classificação padrão, padrão de reconhecimento, otimização, previsão e controle automático. Em alguns casos, as RNAs têm apresentado desempenho superior aos modelos de regressão. Em face ao exposto, objetivou-se com este trabalho avaliar o desempenho das redes neurais artificiais na predição do tempo de armazenamento dos grãos de feijão em função da cor, dureza do tegumento e de diferentes temperaturas. Os grãos foram produzidos e armazenados pela Embrapa Arroz e Feijão, localizada no município de Santo Antônio de Goiás, safra 2013/2014. Foram armazenados 5 grupos de cultivares de feijão carioca com teor de água de 13% b.u. no ano de 2014, as amostras foram armazenadas em câmara tipo Biochemical Oxygen Demand (BOD), com temperaturas (15, 21 e 37 °C). Amostras de grãos foram retiradas aos (36, 72, 108, 144 e 180) dias de armazenamento e foram feitas avaliações de coloração e dureza do tegumento dos grãos. A primeira avaliação foi realizada com os grãos recém-colhidos no ano de 2014, identificados como amostras controle. Os dados foram normalizados entre -1 a 1, as redes treinadas foram do tipo Multilayer Perceptron (MLP), após o treinamento foi selecionada a rede que apresentou melhor performance para solução do problema. A melhor RNA teve um índice de acerto de 83,0% com os dados de treinamento e 91,2% com dados de validação, apresentou correlação superior a 0,900 para treinamento, validação e teste. Nas condições em que foi desenvolvido este trabalho pode-se concluir que as RNAs podem ser utilizadas para estimar os dias de armazenamento em função da cor, dureza e temperatura.Submitted by Sandra Barbosa (sandra.barbosa@ueg.br) on 2021-07-02T12:34:27Z No. of bitstreams: 2 REDES NEURAIS ARTIFICIAIS NA ESTIMATIVA DO TEMPO DE ARMAZENAMENTO DE GRÃOS DE FEIJÃO.pdf: 1698950 bytes, checksum: 6f689e7339b20e605c503d6b6153032b (MD5) license.txt: 2109 bytes, checksum: b76a28645f58b21aeda00ac459312a65 (MD5)Approved for entry into archive by Sandra Barbosa (sandra.barbosa@ueg.br) on 2021-07-02T17:44:12Z (GMT) No. of bitstreams: 2 REDES NEURAIS ARTIFICIAIS NA ESTIMATIVA DO TEMPO DE ARMAZENAMENTO DE GRÃOS DE FEIJÃO.pdf: 1698950 bytes, checksum: 6f689e7339b20e605c503d6b6153032b (MD5) license.txt: 2109 bytes, checksum: b76a28645f58b21aeda00ac459312a65 (MD5)Made available in DSpace on 2021-07-02T17:48:13Z (GMT). No. of bitstreams: 2 REDES NEURAIS ARTIFICIAIS NA ESTIMATIVA DO TEMPO DE ARMAZENAMENTO DE GRÃOS DE FEIJÃO.pdf: 1698950 bytes, checksum: 6f689e7339b20e605c503d6b6153032b (MD5) license.txt: 2109 bytes, checksum: b76a28645f58b21aeda00ac459312a65 (MD5) Previous issue date: 2018-06-28Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfporUniversidade Estadual de GoiásPrograma de Pós-Graduação Stricto sensu em Engenharia AgrícolaUEGBrasilUEG ::Coordenação de Mestrado em Engenharia AgrícolaEscurecimento do feijãoDureza do feijãoRNAMultilayer perceptronFeijãoArmazenamentoDimmingHardnessANNMultilayer perceptronCIENCIAS AGRARIAS::ENGENHARIA AGRICOLARedes neurais artificiais na predição do tempo de armazenamento de grãos de feijãoArtificial neural networks in the estimation of the storage time of bean grainsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-6972928616621901761500500600600-81442318734664517591854457215887615552075167498588264571info:eu-repo/semantics/openAccessreponame:Biblioteca Digital Brasileira de Teses e Dissertações da UEGinstname:Universidade Estadual de Goiás (UEG)instacron:UEGORIGINALREDES NEURAIS ARTIFICIAIS NA ESTIMATIVA DO TEMPO DE ARMAZENAMENTO DE GRÃOS DE FEIJÃO.pdfREDES NEURAIS ARTIFICIAIS NA ESTIMATIVA DO TEMPO DE ARMAZENAMENTO DE GRÃOS DE FEIJÃO.pdfapplication/pdf1698950http://10.20.60.80:8080/tede/bitstream/tede/730/2/REDES+NEURAIS+ARTIFICIAIS+NA+ESTIMATIVA+DO+TEMPO+DE+ARMAZENAMENTO+DE+GR%C3%83OS+DE+FEIJ%C3%83O.pdf6f689e7339b20e605c503d6b6153032bMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82109http://10.20.60.80:8080/tede/bitstream/tede/730/1/license.txtb76a28645f58b21aeda00ac459312a65MD51tede/7302021-07-02 14:48:13.946oai:tede2:tede/730Q29uc2lkZXJhbmRvIGEgIExlaSBuwrogOTYxMC85OCwgYXV0b3Jpem8gYSBpbXByZXNzw6NvIGUvb3UgZG93bmxvYWQsIGEgdMOtdHVsbyBkZSBkaXZ1bGdhw6fDo28gZGEgcHJvZHXDp8OjbyBjaWVudMOtZmljYSBwcm9kdXppZGEgbmEgVW5pdmVyc2lkYWRlIEVzdGFkdWFsIGRlIEdvacOhcy4KCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlIEVzdGFkdWFsIGRlIEdvacOhcyAoVUVHKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVFRyBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVUVHIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVFRwpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlw7pkbyBkYSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQcOHw4NPIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ8ONTklPIE9VIApBUE9JTyBERSBVTUEgQUfDik5DSUEgREUgRk9NRU5UTyBPVSBPVVRSTyBPUkdBTklTTU8gUVVFIE7Dg08gU0VKQSBBIFVFRwpWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFVuaXZlcnNpZGFkZSBFc3RhZHVhbCBkZSBHb2nDoXMgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyAKY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KBiblioteca Digital de Teses e Dissertaçõeshttps://www.bdtd.ueg.br/PUBhttps://www.bdtd.ueg.br/oai/requestbibliotecaunucet@ueg.br||opendoar:2021-07-02T17:48:13Biblioteca Digital Brasileira de Teses e Dissertações da UEG - Universidade Estadual de Goiás (UEG)false
dc.title.por.fl_str_mv Redes neurais artificiais na predição do tempo de armazenamento de grãos de feijão
dc.title.alternative.eng.fl_str_mv Artificial neural networks in the estimation of the storage time of bean grains
title Redes neurais artificiais na predição do tempo de armazenamento de grãos de feijão
spellingShingle Redes neurais artificiais na predição do tempo de armazenamento de grãos de feijão
Farias, Hiago Felipe Lopes de
Escurecimento do feijão
Dureza do feijão
RNA
Multilayer perceptron
Feijão
Armazenamento
Dimming
Hardness
ANN
Multilayer perceptron
CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
title_short Redes neurais artificiais na predição do tempo de armazenamento de grãos de feijão
title_full Redes neurais artificiais na predição do tempo de armazenamento de grãos de feijão
title_fullStr Redes neurais artificiais na predição do tempo de armazenamento de grãos de feijão
title_full_unstemmed Redes neurais artificiais na predição do tempo de armazenamento de grãos de feijão
title_sort Redes neurais artificiais na predição do tempo de armazenamento de grãos de feijão
author Farias, Hiago Felipe Lopes de
author_facet Farias, Hiago Felipe Lopes de
author_role author
dc.contributor.advisor1.fl_str_mv Devilla, Ivano Alessandro
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/6427301186294340
dc.contributor.referee1.fl_str_mv Devilla, Ivano Alessandro
dc.contributor.referee2.fl_str_mv Melo, Francisco Ramos de
dc.contributor.referee3.fl_str_mv Resende, Osvaldo
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/9282890888306296
dc.contributor.author.fl_str_mv Farias, Hiago Felipe Lopes de
contributor_str_mv Devilla, Ivano Alessandro
Devilla, Ivano Alessandro
Melo, Francisco Ramos de
Resende, Osvaldo
dc.subject.por.fl_str_mv Escurecimento do feijão
Dureza do feijão
RNA
Multilayer perceptron
Feijão
Armazenamento
topic Escurecimento do feijão
Dureza do feijão
RNA
Multilayer perceptron
Feijão
Armazenamento
Dimming
Hardness
ANN
Multilayer perceptron
CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
dc.subject.eng.fl_str_mv Dimming
Hardness
ANN
Multilayer perceptron
dc.subject.cnpq.fl_str_mv CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
description Bean is a widely cultivated crop in Brazil and the world. In the period of storage of grains, deterioration of the product occurs, which is gradual, irreversible and cumulative. Artificial Neural Networks (ANNs) have been used in a wide range of applications, such as: standard classification, recognition pattern, optimization, prediction and automatic control. In some cases, ANNs have performed better than the regression models. In the light of the above, this work aimed to evaluate the performance of artificial neural networks in predicting the storage time of bean grains as a function of color, tegument hardness and different temperatures. The grains were produced and stored by Embrapa Rice e Beans, located in the municipality of Santo Antônio de Goiás, harvest 2013/2014. Five groups of carioca bean cultivars with water content of 13% b.u. in the year 2014, the samples were stored in a Biochemical Oxygen Demand (BOD) type chamber, at temperatures (15, 21 and 37 ° C). Grain samples were collected at (36, 72, 108, 144 and 180) days of storage and staining and hardness evaluations of the tegument of the grains. The first evaluation was performed with the grains freshly harvested in the year 2014, identified as control samples. Data were normalized between -1 to 1, the trained networks were of the Multilayer Perceptron (MLP) type, after the training was selected the network that presented better performance to solve the problem. The best RNA had a success rate of 83.0% with training data and 91.2% with validation data, presented a correlation higher than 0.900 for training, validation and testing. Under the conditions in which this work was developed it can be concluded that RNAs can be used to estimate storage days as a function of color, hardness and temperature.
publishDate 2018
dc.date.issued.fl_str_mv 2018-06-28
dc.date.accessioned.fl_str_mv 2021-07-02T17:48:13Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv FARIAS, H. F. L. Redes neurais artificiais na predição do tempo de armazenamento de grãos de feijão. 2018. 65 f. Dissertação (Mestrado em Engenharia Agrícola) - Câmpus Central - Sede: Anápolis - CET, Universidade Estadual de Goiás, Anápolis-GO.
dc.identifier.uri.fl_str_mv http://www.bdtd.ueg.br/handle/tede/730
identifier_str_mv FARIAS, H. F. L. Redes neurais artificiais na predição do tempo de armazenamento de grãos de feijão. 2018. 65 f. Dissertação (Mestrado em Engenharia Agrícola) - Câmpus Central - Sede: Anápolis - CET, Universidade Estadual de Goiás, Anápolis-GO.
url http://www.bdtd.ueg.br/handle/tede/730
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv -6972928616621901761
dc.relation.confidence.fl_str_mv 500
500
600
600
dc.relation.department.fl_str_mv -814423187346645175
dc.relation.cnpq.fl_str_mv 9185445721588761555
dc.relation.sponsorship.fl_str_mv 2075167498588264571
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-Graduação Stricto sensu em Engenharia Agrícola
dc.publisher.initials.fl_str_mv UEG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv UEG ::Coordenação de Mestrado em Engenharia Agrícola
publisher.none.fl_str_mv Universidade Estadual de Goiás
dc.source.none.fl_str_mv reponame:Biblioteca Digital Brasileira de Teses e Dissertações da UEG
instname:Universidade Estadual de Goiás (UEG)
instacron:UEG
instname_str Universidade Estadual de Goiás (UEG)
instacron_str UEG
institution UEG
reponame_str Biblioteca Digital Brasileira de Teses e Dissertações da UEG
collection Biblioteca Digital Brasileira de Teses e Dissertações da UEG
bitstream.url.fl_str_mv http://10.20.60.80:8080/tede/bitstream/tede/730/2/REDES+NEURAIS+ARTIFICIAIS+NA+ESTIMATIVA+DO+TEMPO+DE+ARMAZENAMENTO+DE+GR%C3%83OS+DE+FEIJ%C3%83O.pdf
http://10.20.60.80:8080/tede/bitstream/tede/730/1/license.txt
bitstream.checksum.fl_str_mv 6f689e7339b20e605c503d6b6153032b
b76a28645f58b21aeda00ac459312a65
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital Brasileira de Teses e Dissertações da UEG - Universidade Estadual de Goiás (UEG)
repository.mail.fl_str_mv bibliotecaunucet@ueg.br||
_version_ 1856218593403863040