Análise dos fatores que contribuem para a recuperação dos créditos de ICMS inscritos em divida ativa no estado do Rio de Janeiro

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Guimarães, Tiago Rodrigues
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade do Estado do Rio de Janeiro
Centro de Ciências Sociais::Faculdade de Administração e Finanças
Brasil
UERJ
Programa de Pós-Graduação em Controladoria e Gestão Pública
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.bdtd.uerj.br/handle/1/20528
Resumo: As Procuradorias, em geral, são conhecidas por atuar de maneira burocrática, seguindo formalmente os atos legalmente previstos, porém sem avaliar a eficiência e a efetividade das ações empreendidas. Isso resulta no acúmulo de execuções fiscais no judiciário, gerando um impacto negativo nos cofres públicos, pois muitas vezes não há um retorno proporcional aos esforços realizados. Diante desse contexto, o objetivo deste trabalho é contribuir para o aprimoramento da gestão da dívida ativa do Estado do Rio de Janeiro. Para isso, propõe-se uma abordagem que fornecerá uma classificação da probabilidade da recuperabilidade dos créditos inscritos, permitindo que a Procuradoria Geral do Estado do Rio de Janeiro (PGE/RJ) direcione seus esforços de recuperação de forma mais eficiente e, ao mesmo tempo, reconheça contabilmente esses créditos de maneira mais objetiva. A metodologia adotada neste estudo envolve a análise quantitativa e o uso do algoritmo de aprendizado de máquina conhecido como XGBoost. Através dessa abordagem, serão identificados os fatores que influenciam a probabilidade de recuperação das Certidões de Dívida Ativa (CDA), levando em consideração variáveis como quantidade de dias em débito, valor total da dívida, dias de empresa, situação cadastral e região, entre outras. Com base nos resultados obtidos, será estabelecido um rating de créditos, proporcionando uma visão mais clara sobre a probabilidade de recuperação de cada CDA e permitindo a priorização dos esforços de recuperação nos casos com maior probabilidade de sucesso. Além disso, esses resultados poderão contribuir para uma melhor estimativa de perdas relacionadas à dívida ativa do Estado do Rio de Janeiro. Atualmente, a PGE/RJ utiliza um método baseado no julgamento profissional dos procuradores, sem a utilização de critérios estatísticos objetivos, para estimar as perdas com créditos da dívida ativa. No entanto, com base nos resultados do modelo proposto, é estimado que as perdas cheguem a aproximadamente 98,64% do valor total da dívida ativa, revelando a necessidade de uma revisão dessa metodologia. Portanto, os resultados obtidos por meio do XGBoost podem contribuir significativamente para a construção de uma estimativa mais precisa das perdas com os créditos da dívida ativa do Estado do Rio de Janeiro. Vale destacar que o modelo desenvolvido apresentou uma alta perfomance na previsão da recuperabilidade dos créditos. Além disso, esse enfoque mais objetivo e baseado em dados pode auxiliar a PGE/RJ a direcionar seus esforços de recuperação de forma mais eficaz, resultando em um melhor desempenho na gestão da dívida ativa e no retorno financeiro para os cofres públicos.
id UERJ_5dff2dc902b03e4825e1a69cec3376ef
oai_identifier_str oai:www.bdtd.uerj.br:1/20528
network_acronym_str UERJ
network_name_str Biblioteca Digital de Teses e Dissertações da UERJ
repository_id_str
spelling Análise dos fatores que contribuem para a recuperação dos créditos de ICMS inscritos em divida ativa no estado do Rio de JaneiroAnalysis of the factors that contibute to the recovery of ICMS credits in the active debt of the state of Rio de JaneiroXGBoostActive DebtPublic ManagementMachine Learning AlgorithmCredit Rating.Dívida AtivaGestão PúblicaAlgoritmo de aprendizado de máquinaClassificação de créditosCIENCIAS SOCIAIS APLICADAS::ADMINISTRACAO::ADMINISTRACAO PUBLICA::CONTABILIDADE E FINANCAS PUBLICASAs Procuradorias, em geral, são conhecidas por atuar de maneira burocrática, seguindo formalmente os atos legalmente previstos, porém sem avaliar a eficiência e a efetividade das ações empreendidas. Isso resulta no acúmulo de execuções fiscais no judiciário, gerando um impacto negativo nos cofres públicos, pois muitas vezes não há um retorno proporcional aos esforços realizados. Diante desse contexto, o objetivo deste trabalho é contribuir para o aprimoramento da gestão da dívida ativa do Estado do Rio de Janeiro. Para isso, propõe-se uma abordagem que fornecerá uma classificação da probabilidade da recuperabilidade dos créditos inscritos, permitindo que a Procuradoria Geral do Estado do Rio de Janeiro (PGE/RJ) direcione seus esforços de recuperação de forma mais eficiente e, ao mesmo tempo, reconheça contabilmente esses créditos de maneira mais objetiva. A metodologia adotada neste estudo envolve a análise quantitativa e o uso do algoritmo de aprendizado de máquina conhecido como XGBoost. Através dessa abordagem, serão identificados os fatores que influenciam a probabilidade de recuperação das Certidões de Dívida Ativa (CDA), levando em consideração variáveis como quantidade de dias em débito, valor total da dívida, dias de empresa, situação cadastral e região, entre outras. Com base nos resultados obtidos, será estabelecido um rating de créditos, proporcionando uma visão mais clara sobre a probabilidade de recuperação de cada CDA e permitindo a priorização dos esforços de recuperação nos casos com maior probabilidade de sucesso. Além disso, esses resultados poderão contribuir para uma melhor estimativa de perdas relacionadas à dívida ativa do Estado do Rio de Janeiro. Atualmente, a PGE/RJ utiliza um método baseado no julgamento profissional dos procuradores, sem a utilização de critérios estatísticos objetivos, para estimar as perdas com créditos da dívida ativa. No entanto, com base nos resultados do modelo proposto, é estimado que as perdas cheguem a aproximadamente 98,64% do valor total da dívida ativa, revelando a necessidade de uma revisão dessa metodologia. Portanto, os resultados obtidos por meio do XGBoost podem contribuir significativamente para a construção de uma estimativa mais precisa das perdas com os créditos da dívida ativa do Estado do Rio de Janeiro. Vale destacar que o modelo desenvolvido apresentou uma alta perfomance na previsão da recuperabilidade dos créditos. Além disso, esse enfoque mais objetivo e baseado em dados pode auxiliar a PGE/RJ a direcionar seus esforços de recuperação de forma mais eficaz, resultando em um melhor desempenho na gestão da dívida ativa e no retorno financeiro para os cofres públicos.Prosecutor's Offices are generally known for their bureaucratic approach, following formal procedures as legally prescribed, but often without evaluating the efficiency and effectiveness of their actions. This leads to a backlog of tax executions in the judicial system, causing a negative impact on public funds as efforts are not always proportionally rewarded. In light of this context, the objective of this study is to contribute to the improvement of the management of the State of Rio de Janeiro's active debt. To achieve this, an approach is proposed that provides a classification of the probability of recovering the registered credits, allowing the State Prosecutor's Office of Rio de Janeiro (PGE/RJ) to allocate recovery efforts more efficiently while recognizing these credits more objectively in accounting terms. The methodology adopted in this study involves quantitative analysis and the use of the machine learning algorithm known as XGBoost. Through this approach, factors influencing the probability of recovering Active Debt Certificates (CDA) will be identified, considering variables such as days in arrears, total debt amount, days of company existence, registration status, and region, among others. Based on the obtained results, a credit rating will be established, providing a clearer view of the probability of recovery for each CDA and allowing for the prioritization of recovery efforts in cases with a higher likelihood of success. Additionally, these results can contribute to a better estimation of losses related to the State of Rio de Janeiro's active debt. Currently, PGE/RJ relies on a method based on professional judgment of prosecutors, without the use of objective statistical criteria, to estimate losses from active debt credits. However, based on the results of the proposed model, it is estimated that the losses amount to approximately 98,64% of the total active debt value, highlighting the need for a revision of this methodology. Therefore, the results obtained through the XGBoost can significantly contribute to a more accurate estimation of losses from the State of Rio de Janeiro's active debt credits. It is noteworthy that the developed model demonstrated high performance in predicting credit recoverability. Moreover, this more objective and data-driven approach can assist PGE/RJ in directing recovery efforts more effectively, resulting in improved management of the active debt and financial returns to public funds.Universidade do Estado do Rio de JaneiroCentro de Ciências Sociais::Faculdade de Administração e FinançasBrasilUERJPrograma de Pós-Graduação em Controladoria e Gestão PúblicaPessanha, José Francisco Moreirahttp://lattes.cnpq.br/3384481291163061Alves, Francisco José dos Santoshttp://lattes.cnpq.br/5717307958113119Souza, Reinaldo Castrohttp://lattes.cnpq.br/699282481729543Guimarães, Tiago Rodrigues2023-10-30T14:55:35Z2023-07-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfGUIMARÃES, Tiago Rodrigues. Análise dos fatores que contribuem para a recuperação dos créditos de ICMS inscritos em divida ativa no estado do Rio de Janeiro. 2023. 76 f. Dissertação (Mestrado em Controladoria e Gestão Pública) - Faculdade de Administração e Finanças, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2023.http://www.bdtd.uerj.br/handle/1/20528porinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UERJinstname:Universidade do Estado do Rio de Janeiro (UERJ)instacron:UERJ2024-02-27T16:00:21Zoai:www.bdtd.uerj.br:1/20528Biblioteca Digital de Teses e Dissertaçõeshttp://www.bdtd.uerj.br/PUBhttps://www.bdtd.uerj.br:8443/oai/requestbdtd.suporte@uerj.bropendoar:29032024-02-27T16:00:21Biblioteca Digital de Teses e Dissertações da UERJ - Universidade do Estado do Rio de Janeiro (UERJ)false
dc.title.none.fl_str_mv Análise dos fatores que contribuem para a recuperação dos créditos de ICMS inscritos em divida ativa no estado do Rio de Janeiro
Analysis of the factors that contibute to the recovery of ICMS credits in the active debt of the state of Rio de Janeiro
title Análise dos fatores que contribuem para a recuperação dos créditos de ICMS inscritos em divida ativa no estado do Rio de Janeiro
spellingShingle Análise dos fatores que contribuem para a recuperação dos créditos de ICMS inscritos em divida ativa no estado do Rio de Janeiro
Guimarães, Tiago Rodrigues
XGBoost
Active Debt
Public Management
Machine Learning Algorithm
Credit Rating.
Dívida Ativa
Gestão Pública
Algoritmo de aprendizado de máquina
Classificação de créditos
CIENCIAS SOCIAIS APLICADAS::ADMINISTRACAO::ADMINISTRACAO PUBLICA::CONTABILIDADE E FINANCAS PUBLICAS
title_short Análise dos fatores que contribuem para a recuperação dos créditos de ICMS inscritos em divida ativa no estado do Rio de Janeiro
title_full Análise dos fatores que contribuem para a recuperação dos créditos de ICMS inscritos em divida ativa no estado do Rio de Janeiro
title_fullStr Análise dos fatores que contribuem para a recuperação dos créditos de ICMS inscritos em divida ativa no estado do Rio de Janeiro
title_full_unstemmed Análise dos fatores que contribuem para a recuperação dos créditos de ICMS inscritos em divida ativa no estado do Rio de Janeiro
title_sort Análise dos fatores que contribuem para a recuperação dos créditos de ICMS inscritos em divida ativa no estado do Rio de Janeiro
author Guimarães, Tiago Rodrigues
author_facet Guimarães, Tiago Rodrigues
author_role author
dc.contributor.none.fl_str_mv Pessanha, José Francisco Moreira
http://lattes.cnpq.br/3384481291163061
Alves, Francisco José dos Santos
http://lattes.cnpq.br/5717307958113119
Souza, Reinaldo Castro
http://lattes.cnpq.br/699282481729543
dc.contributor.author.fl_str_mv Guimarães, Tiago Rodrigues
dc.subject.por.fl_str_mv XGBoost
Active Debt
Public Management
Machine Learning Algorithm
Credit Rating.
Dívida Ativa
Gestão Pública
Algoritmo de aprendizado de máquina
Classificação de créditos
CIENCIAS SOCIAIS APLICADAS::ADMINISTRACAO::ADMINISTRACAO PUBLICA::CONTABILIDADE E FINANCAS PUBLICAS
topic XGBoost
Active Debt
Public Management
Machine Learning Algorithm
Credit Rating.
Dívida Ativa
Gestão Pública
Algoritmo de aprendizado de máquina
Classificação de créditos
CIENCIAS SOCIAIS APLICADAS::ADMINISTRACAO::ADMINISTRACAO PUBLICA::CONTABILIDADE E FINANCAS PUBLICAS
description As Procuradorias, em geral, são conhecidas por atuar de maneira burocrática, seguindo formalmente os atos legalmente previstos, porém sem avaliar a eficiência e a efetividade das ações empreendidas. Isso resulta no acúmulo de execuções fiscais no judiciário, gerando um impacto negativo nos cofres públicos, pois muitas vezes não há um retorno proporcional aos esforços realizados. Diante desse contexto, o objetivo deste trabalho é contribuir para o aprimoramento da gestão da dívida ativa do Estado do Rio de Janeiro. Para isso, propõe-se uma abordagem que fornecerá uma classificação da probabilidade da recuperabilidade dos créditos inscritos, permitindo que a Procuradoria Geral do Estado do Rio de Janeiro (PGE/RJ) direcione seus esforços de recuperação de forma mais eficiente e, ao mesmo tempo, reconheça contabilmente esses créditos de maneira mais objetiva. A metodologia adotada neste estudo envolve a análise quantitativa e o uso do algoritmo de aprendizado de máquina conhecido como XGBoost. Através dessa abordagem, serão identificados os fatores que influenciam a probabilidade de recuperação das Certidões de Dívida Ativa (CDA), levando em consideração variáveis como quantidade de dias em débito, valor total da dívida, dias de empresa, situação cadastral e região, entre outras. Com base nos resultados obtidos, será estabelecido um rating de créditos, proporcionando uma visão mais clara sobre a probabilidade de recuperação de cada CDA e permitindo a priorização dos esforços de recuperação nos casos com maior probabilidade de sucesso. Além disso, esses resultados poderão contribuir para uma melhor estimativa de perdas relacionadas à dívida ativa do Estado do Rio de Janeiro. Atualmente, a PGE/RJ utiliza um método baseado no julgamento profissional dos procuradores, sem a utilização de critérios estatísticos objetivos, para estimar as perdas com créditos da dívida ativa. No entanto, com base nos resultados do modelo proposto, é estimado que as perdas cheguem a aproximadamente 98,64% do valor total da dívida ativa, revelando a necessidade de uma revisão dessa metodologia. Portanto, os resultados obtidos por meio do XGBoost podem contribuir significativamente para a construção de uma estimativa mais precisa das perdas com os créditos da dívida ativa do Estado do Rio de Janeiro. Vale destacar que o modelo desenvolvido apresentou uma alta perfomance na previsão da recuperabilidade dos créditos. Além disso, esse enfoque mais objetivo e baseado em dados pode auxiliar a PGE/RJ a direcionar seus esforços de recuperação de forma mais eficaz, resultando em um melhor desempenho na gestão da dívida ativa e no retorno financeiro para os cofres públicos.
publishDate 2023
dc.date.none.fl_str_mv 2023-10-30T14:55:35Z
2023-07-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv GUIMARÃES, Tiago Rodrigues. Análise dos fatores que contribuem para a recuperação dos créditos de ICMS inscritos em divida ativa no estado do Rio de Janeiro. 2023. 76 f. Dissertação (Mestrado em Controladoria e Gestão Pública) - Faculdade de Administração e Finanças, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2023.
http://www.bdtd.uerj.br/handle/1/20528
identifier_str_mv GUIMARÃES, Tiago Rodrigues. Análise dos fatores que contribuem para a recuperação dos créditos de ICMS inscritos em divida ativa no estado do Rio de Janeiro. 2023. 76 f. Dissertação (Mestrado em Controladoria e Gestão Pública) - Faculdade de Administração e Finanças, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2023.
url http://www.bdtd.uerj.br/handle/1/20528
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade do Estado do Rio de Janeiro
Centro de Ciências Sociais::Faculdade de Administração e Finanças
Brasil
UERJ
Programa de Pós-Graduação em Controladoria e Gestão Pública
publisher.none.fl_str_mv Universidade do Estado do Rio de Janeiro
Centro de Ciências Sociais::Faculdade de Administração e Finanças
Brasil
UERJ
Programa de Pós-Graduação em Controladoria e Gestão Pública
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UERJ
instname:Universidade do Estado do Rio de Janeiro (UERJ)
instacron:UERJ
instname_str Universidade do Estado do Rio de Janeiro (UERJ)
instacron_str UERJ
institution UERJ
reponame_str Biblioteca Digital de Teses e Dissertações da UERJ
collection Biblioteca Digital de Teses e Dissertações da UERJ
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UERJ - Universidade do Estado do Rio de Janeiro (UERJ)
repository.mail.fl_str_mv bdtd.suporte@uerj.br
_version_ 1829133705661120512