Avaliação de métodos de classificação de glaucoma em imagens de fundoscopia

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Assis, Débora Ferreira de
Orientador(a): Cortez, Paulo César
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/52592
Resumo: Glaucoma is an asymptomatic eye disease that, if not treated on time, can lead to blindness. The World Health Organization (WHO) estimates that by 2020 glaucoma should affect 80 million people and by 2040 it will be 111.5 million. In this context, the present dissertation aims to compare classification methods and study different techniques for the extraction of image characteristics, thus assisting the specialist physician in diagnosing the disease. Three models are developed based on different types of feature extraction. Model 1 extracts nongeometric characteristics: Local Binary Pattern (LBP), Histogram of Oriented Gradients (HOG), Zernike moments and Gabor filter statistical information. Model 2 is similar to model 1 with the addition of geometric features. And in model 3, pre-trained convolutional network models (MobileNet, VGG16, VGG19 and Resnet50) are used to extract information from the images. For each model, the obtained characteristics are submitted to Principal Component Analysis (PCA) for dimensionality reduction, the resulting components are classified by: Logistic Regression (RL), Gradient Increasing Decision Tree (GBDT), Support Vector Machine (SVM), k-nearest neighbors (k-NN), and Multilayer Perceptron (MLP). To improve classification performance, hyperparameter optimization techniques using Grid Search are used. Of the three models evaluated, model 1 produces the best results using SVM for classification. The test results achieved an average accuracy rate of 89.03%, sensitivity of 86.59%, specificity of 91.06% and AUC (area under a curve) of 88.95%.
id UFC-7_0511920649100691a9bbe21a4e79e70f
oai_identifier_str oai:repositorio.ufc.br:riufc/52592
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Assis, Débora Ferreira deCortez, Paulo César2020-06-26T00:17:14Z2020-06-26T00:17:14Z2020ASSIS, D. F. de. Avaliação de métodos de classificação de glaucoma em imagens de fundoscopia. 2020. 107 f. Dissertação (Mestrado em Engenharia de Teleinformática) – Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2020.http://www.repositorio.ufc.br/handle/riufc/52592Glaucoma is an asymptomatic eye disease that, if not treated on time, can lead to blindness. The World Health Organization (WHO) estimates that by 2020 glaucoma should affect 80 million people and by 2040 it will be 111.5 million. In this context, the present dissertation aims to compare classification methods and study different techniques for the extraction of image characteristics, thus assisting the specialist physician in diagnosing the disease. Three models are developed based on different types of feature extraction. Model 1 extracts nongeometric characteristics: Local Binary Pattern (LBP), Histogram of Oriented Gradients (HOG), Zernike moments and Gabor filter statistical information. Model 2 is similar to model 1 with the addition of geometric features. And in model 3, pre-trained convolutional network models (MobileNet, VGG16, VGG19 and Resnet50) are used to extract information from the images. For each model, the obtained characteristics are submitted to Principal Component Analysis (PCA) for dimensionality reduction, the resulting components are classified by: Logistic Regression (RL), Gradient Increasing Decision Tree (GBDT), Support Vector Machine (SVM), k-nearest neighbors (k-NN), and Multilayer Perceptron (MLP). To improve classification performance, hyperparameter optimization techniques using Grid Search are used. Of the three models evaluated, model 1 produces the best results using SVM for classification. The test results achieved an average accuracy rate of 89.03%, sensitivity of 86.59%, specificity of 91.06% and AUC (area under a curve) of 88.95%.O glaucoma é uma doença ocular assintomática no início que, se não for tratada a tempo, pode acarretar a cegueira. A Organização Mundial de Saúde (OMS) estimou que em, 2020, o glaucoma deve afetar 80 milhões de pessoas e, em 2040, serão 111,5 milhões. Neste contexto, a presente dissertação visa comparar métodos de classificação e estudar diferentes técnicas de extração de características de imagens da base pública RIM-ONE versão 2 para auxiliar o médico especialista no diagnóstico da doença. São desenvolvidos 3 modelos com base em diferentes tipos de extração de características. O modelo 1 extrai características não geométricas previamente indicadas: Padrões Binários Locais (LBP), Histograma de Gradientes Orientados (HOG), momentos de Zernike e informações estatísticas do filtro de Gabor. No modelo 2 adicionam-se ao modelo 1 características geométricas extraídas das imagens. Já no modelo 3 são utilizadas arquiteturas pré- treinadas das redes convolucionais (MobileNet, VGG16, VGG19 e Resnet50) para extração de informações das imagens. Para cada modelo, as características obtidas são submetidas à Análise de Componentes Principais (PCA) para a redução de dimensionalidade, cujas componentes resultantes são classificadas por: Regressão Logística (RL), Árvore de decisão com aumento de gradiente (GBDT), Máquina de vetores de suporte (SVM), k vizinhos mais próximos (k-NN) e Perceptron Multicamadas (MLP). Para melhorar o desempenho de classificação, utilizam-se técnicas de otimização de hiperparâmetros através do algoritmo de pesquisa em grade. Dentre os três modelos avaliados, a extração de características do modelo 1 juntamente com a classificação utilizando o SVM, produzem as maiores taxas médias obtidas através das 100 execuções. Os resultados dos dados de teste atingem uma taxa média de acurácia igual a 89,03%, sensibilidade igual a 86,59%, especificidade igual a 91,06% e área sob a curva (AUC) igual a 88,95%.TeleinformáticaGlaucoma - ClassificaçãoRede neural convolucionalSegmentationHyperparameter optimizationAvaliação de métodos de classificação de glaucoma em imagens de fundoscopiainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2020_dis_dfassis.pdf2020_dis_dfassis.pdfapplication/pdf3427137http://repositorio.ufc.br/bitstream/riufc/52592/3/2020_dis_dfassis.pdfc14f62b0307fd97e024f125d10a22202MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/52592/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD54riufc/525922020-08-26 11:01:15.367oai:repositorio.ufc.br:riufc/52592Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2020-08-26T14:01:15Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Avaliação de métodos de classificação de glaucoma em imagens de fundoscopia
title Avaliação de métodos de classificação de glaucoma em imagens de fundoscopia
spellingShingle Avaliação de métodos de classificação de glaucoma em imagens de fundoscopia
Assis, Débora Ferreira de
Teleinformática
Glaucoma - Classificação
Rede neural convolucional
Segmentation
Hyperparameter optimization
title_short Avaliação de métodos de classificação de glaucoma em imagens de fundoscopia
title_full Avaliação de métodos de classificação de glaucoma em imagens de fundoscopia
title_fullStr Avaliação de métodos de classificação de glaucoma em imagens de fundoscopia
title_full_unstemmed Avaliação de métodos de classificação de glaucoma em imagens de fundoscopia
title_sort Avaliação de métodos de classificação de glaucoma em imagens de fundoscopia
author Assis, Débora Ferreira de
author_facet Assis, Débora Ferreira de
author_role author
dc.contributor.author.fl_str_mv Assis, Débora Ferreira de
dc.contributor.advisor1.fl_str_mv Cortez, Paulo César
contributor_str_mv Cortez, Paulo César
dc.subject.por.fl_str_mv Teleinformática
Glaucoma - Classificação
Rede neural convolucional
Segmentation
Hyperparameter optimization
topic Teleinformática
Glaucoma - Classificação
Rede neural convolucional
Segmentation
Hyperparameter optimization
description Glaucoma is an asymptomatic eye disease that, if not treated on time, can lead to blindness. The World Health Organization (WHO) estimates that by 2020 glaucoma should affect 80 million people and by 2040 it will be 111.5 million. In this context, the present dissertation aims to compare classification methods and study different techniques for the extraction of image characteristics, thus assisting the specialist physician in diagnosing the disease. Three models are developed based on different types of feature extraction. Model 1 extracts nongeometric characteristics: Local Binary Pattern (LBP), Histogram of Oriented Gradients (HOG), Zernike moments and Gabor filter statistical information. Model 2 is similar to model 1 with the addition of geometric features. And in model 3, pre-trained convolutional network models (MobileNet, VGG16, VGG19 and Resnet50) are used to extract information from the images. For each model, the obtained characteristics are submitted to Principal Component Analysis (PCA) for dimensionality reduction, the resulting components are classified by: Logistic Regression (RL), Gradient Increasing Decision Tree (GBDT), Support Vector Machine (SVM), k-nearest neighbors (k-NN), and Multilayer Perceptron (MLP). To improve classification performance, hyperparameter optimization techniques using Grid Search are used. Of the three models evaluated, model 1 produces the best results using SVM for classification. The test results achieved an average accuracy rate of 89.03%, sensitivity of 86.59%, specificity of 91.06% and AUC (area under a curve) of 88.95%.
publishDate 2020
dc.date.accessioned.fl_str_mv 2020-06-26T00:17:14Z
dc.date.available.fl_str_mv 2020-06-26T00:17:14Z
dc.date.issued.fl_str_mv 2020
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv ASSIS, D. F. de. Avaliação de métodos de classificação de glaucoma em imagens de fundoscopia. 2020. 107 f. Dissertação (Mestrado em Engenharia de Teleinformática) – Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2020.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/52592
identifier_str_mv ASSIS, D. F. de. Avaliação de métodos de classificação de glaucoma em imagens de fundoscopia. 2020. 107 f. Dissertação (Mestrado em Engenharia de Teleinformática) – Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2020.
url http://www.repositorio.ufc.br/handle/riufc/52592
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/52592/3/2020_dis_dfassis.pdf
http://repositorio.ufc.br/bitstream/riufc/52592/4/license.txt
bitstream.checksum.fl_str_mv c14f62b0307fd97e024f125d10a22202
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793216798064640