Restricting infections on graphs: immunization problems

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: Morais, Cícero Samuel Santos
Orientador(a): Oliveira, Ana Karolinna Maia de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Área do conhecimento CNPq:
Link de acesso: http://repositorio.ufc.br/handle/riufc/82653
Resumo: Consider a graph G in which cv(τ) ∈ {0,1} denotes the state of the vertex v ∈ V(G) at a given time τ ∈ N. If cv(τ) = 0, we say that vertex v is inactive or uninfected at time τ; otherwise, we say that v is active or infected at time τ. A collection of states Cτ = (cv(τ))v∈V(G) is said to be a configuration of G at time τ. A sequence of configurations P = (Cτ)τ∈N of G is called a discrete dynamic process on G. Given a graph G, a function t : V(G) → N that assigns to each vertex v of G a value called the threshold of v, and a set S ⊆ V(G) of initially infected vertices, we say that P = It(G,S) is a t-irreversible process in G if P is a discrete dynamical process in G such that, for all v ∈V(G), we have that cv(0) = 1 if and only if v ∈ S and cv(τ +1) = 1 if and only if |{u ∈ NG(v) | cu(τ) = 1}| ≥ t(v). In other words, in a t-irreversible process P = It(G,S), we start with all the vertices of S infected at time τ = 0 and, at each successive time step, an uninfected vertex v becomes infected if it has at least its threshold t(v) of neighbors infected at the previous time step. Furthermore, once a vertex is infected, it remains infected. We say that the process ends when no more vertices can be infected. Irreversible processes are used to model various phenomena, including the spread of (dis-)information and contagious diseases. Irreversible t-processes are widely studied in the literature, mainly with the aim of finding a set of initially infected vertices that satisfies some criterion. This criterion is usually to maximize the number of infected vertices; or to minimize the time needed to infect all vertices; among other similar ones. In contexts of contagion and diffusion such as those mentioned above, however, it becomes natural to think about how to contain the infection, that is, to restrict the number of infected vertices at the end of the process to a small set. We do this through what we call vertex immunization. An immunized vertex cannot be infected and does not contribute to infecting other vertices. (CORDASCO et al., 2023) introduced the problem INFLUENCE IMMUNIZATION BOUNDING (IIB) in which, given a t-irreversible process P = It(G,S) and naturals k and `, the goal is to find a set Y ⊆ V(G) of vertices to be immunized such that |Y| ≤ ` and the number of infected vertices at the end of the process is at most k. We say that Y is a k-restricting set. In the same paper, the authors showed that the problem is W[1]-hard and W[2]-hard parameterized by some parameters, including k, `, the treewidth of the graph and the neighborhood diversity of the graph. They also showed some FPT algorithms parameterized by combinations of these parameters. In this work, we study IIB on several classes of graphs. For bipartite and split graphs, we show that the problem remains W[2]-hard parameterized by `. We also show that IIB is NP-complete even for subcubic bipartite planar graphs. For trees, we conjecture that the problem also remains NP-complete. For complete graphs where the thresholds of all vertices are equal, we show how to find a minimum k-restricting set. We also show some upper bounds for the size of a k-restricting set for paths, trees, planar and outerplanar graphs and other classes of graphs when k is large enough and the subgraph induced by S is connected.
id UFC-7_0790b62db1115fa330c04ab1bbbc6a46
oai_identifier_str oai:repositorio.ufc.br:riufc/82653
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Morais, Cícero Samuel SantosLima, Carlos Vinícius Gomes CostaOliveira, Ana Karolinna Maia de2025-09-22T18:05:32Z2025-09-22T18:05:32Z2025MORAIS, Cícero Samuel Santos. Restricting infections on graphs: immunization problems. 2025. 74 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2025.http://repositorio.ufc.br/handle/riufc/82653Consider a graph G in which cv(τ) ∈ {0,1} denotes the state of the vertex v ∈ V(G) at a given time τ ∈ N. If cv(τ) = 0, we say that vertex v is inactive or uninfected at time τ; otherwise, we say that v is active or infected at time τ. A collection of states Cτ = (cv(τ))v∈V(G) is said to be a configuration of G at time τ. A sequence of configurations P = (Cτ)τ∈N of G is called a discrete dynamic process on G. Given a graph G, a function t : V(G) → N that assigns to each vertex v of G a value called the threshold of v, and a set S ⊆ V(G) of initially infected vertices, we say that P = It(G,S) is a t-irreversible process in G if P is a discrete dynamical process in G such that, for all v ∈V(G), we have that cv(0) = 1 if and only if v ∈ S and cv(τ +1) = 1 if and only if |{u ∈ NG(v) | cu(τ) = 1}| ≥ t(v). In other words, in a t-irreversible process P = It(G,S), we start with all the vertices of S infected at time τ = 0 and, at each successive time step, an uninfected vertex v becomes infected if it has at least its threshold t(v) of neighbors infected at the previous time step. Furthermore, once a vertex is infected, it remains infected. We say that the process ends when no more vertices can be infected. Irreversible processes are used to model various phenomena, including the spread of (dis-)information and contagious diseases. Irreversible t-processes are widely studied in the literature, mainly with the aim of finding a set of initially infected vertices that satisfies some criterion. This criterion is usually to maximize the number of infected vertices; or to minimize the time needed to infect all vertices; among other similar ones. In contexts of contagion and diffusion such as those mentioned above, however, it becomes natural to think about how to contain the infection, that is, to restrict the number of infected vertices at the end of the process to a small set. We do this through what we call vertex immunization. An immunized vertex cannot be infected and does not contribute to infecting other vertices. (CORDASCO et al., 2023) introduced the problem INFLUENCE IMMUNIZATION BOUNDING (IIB) in which, given a t-irreversible process P = It(G,S) and naturals k and `, the goal is to find a set Y ⊆ V(G) of vertices to be immunized such that |Y| ≤ ` and the number of infected vertices at the end of the process is at most k. We say that Y is a k-restricting set. In the same paper, the authors showed that the problem is W[1]-hard and W[2]-hard parameterized by some parameters, including k, `, the treewidth of the graph and the neighborhood diversity of the graph. They also showed some FPT algorithms parameterized by combinations of these parameters. In this work, we study IIB on several classes of graphs. For bipartite and split graphs, we show that the problem remains W[2]-hard parameterized by `. We also show that IIB is NP-complete even for subcubic bipartite planar graphs. For trees, we conjecture that the problem also remains NP-complete. For complete graphs where the thresholds of all vertices are equal, we show how to find a minimum k-restricting set. We also show some upper bounds for the size of a k-restricting set for paths, trees, planar and outerplanar graphs and other classes of graphs when k is large enough and the subgraph induced by S is connected.Considere um grafo G em que cv(τ) ∈ {0,1} denota o estado do vértice v ∈ V(G) em um dado tempo τ ∈ N. Se cv(τ) = 0, dizemos que o vértice v está inativo ou não-infectado no tempo τ; caso contrário, dizemos que v está ativo ou infectado no tempo τ. Uma coleção de estados Cτ = (cv(τ))v∈V(G) é dita uma configuração de G no tempo τ. Uma sequência de configurações P = (Cτ)τ∈N de G é chamada de um processo dinâmico discreto em G. Dados um grafo G, uma função t : V(G) → N que atribui a cada vértice v de G um valor chamado de limiar de v, e um conjunto S ⊆ V(G) de vértices inicialmente infectados, dizemos que P = It(G,S) é um processo t-irreversível em G se P é um processo dinâmico discreto em G tal que, para todo v ∈ V(G), temos que cv(0) = 1 se e somente se v ∈ S e cv(τ + 1) = 1 se e somente se |{u ∈ NG(v) | cu(τ) = 1}| ≥ t(v). Ou seja, em um processo t-irreversível P = It(G,S), iniciamos com todos os vértices de S infectados no tempo τ = 0 e, a cada passo de tempo sucessivo, um vértice não-infectado v torna-se infectado se tiver pelo menos seu limiar t(v) de vizinhos infectados no passo de tempo anterior. Além disso, uma vez que um vértice é infectado, ele permanece infectado. Dizemos que o processo termina quando mais nenhum vértice pode ser infectado. Processos irreversíveis são utilizados para modelar diversos fenômenos, entre eles: difusão de (des-)informações e doenças contagiosas. Processos t-irreversíveis são bastante estudados na literatura principalmente com o objetivo de encontrar um conjunto de vértices inicialmente infectados que satisfaça algum critério. Este critério geralmente é maximizar o número de vértices infectados; ou minimizar o tempo necessário para infectar todos os vértices; entre outros similares. Porém, em contextos de contágio e difusão como os citados acima, torna-se natural pensar em como conter a infecção, ou seja, restringir o número de vértices infectados no fim do processo a um conjunto pequeno. Fazemos isto através do que chamamos de imunização de vértices. Um vértice imunizado não pode ser infectado e não contribui para infectar outros vértices. (CORDASCO et al., 2023) introduziu o problema INFLUENCE IMMUNIZATION BOUNDING (IIB) em que, dado um processo t-irreversível P = It(G,S) e naturais k e `, o objetivo é encontrar um conjunto Y ⊆ V(G) de vértices a serem imunizados tal que |Y| ≤ ` e o número de vértices infectados ao fim do processo é no máximo k. Dizemos que Y é um conjunto k-restritor. No mesmo artigo, os autores mostraram que o problema é W[1]-difícil e W[2]-difícil parametrizado por alguns parâmetros, entre eles k, `, a largura em árvore do grafo e a diversidade de vizinhança do grafo. Eles também mostraram alguns algoritmos FPT parametrizados por combinações destes parâmetros. Neste trabalho, nós estudamos IIB em diversas classes de grafos. Para grafos bipartidos e split, nós mostramos que o problema continua W[2]-difícil parametrizado por `. Mostramos também que IIB é NP-completo mesmo em grafos planares bipartidos subcúbicos. Para árvores, conjecturamos que o problema também permanece NP-completo. Para grafos completos em que os limiares de todos os vértices são iguais, mostramos como encontrar um conjunto k-restritor mínimo. Mostramos também alguns limitantes superiores para o tamanho de um conjunto k-restritor de caminhos, árvores, grafos planares e exoplanares e outras classes de grafos quando k é suficientemente grande e o subgrafo induzido por S é conexo.Restricting infections on graphs: immunization problemsRestricting infections on graphs: immunization problemsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisAlgoritmoImunizaçãoComplexidade parametrizadaProcessos irreversíveisProcessos dinâmicos em grafosTeoria dos grafosAlgorithmDynamical processes on graphsGraph theoryImmunizationIrreversible processesParameterized complexityCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOinfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFChttp://lattes.cnpq.br/3942868279619594http://lattes.cnpq.br/3309825374177429https://orcid.org/0000-0002-6666-0533http://lattes.cnpq.br/92451221657724012025-09-22LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/82653/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD54ORIGINAL2025_dis_cssmorais.pdf2025_dis_cssmorais.pdfapplication/pdf2215342http://repositorio.ufc.br/bitstream/riufc/82653/5/2025_dis_cssmorais.pdfbce7a3bcf74c30a49622d92f1966125aMD552025_dis_cssmorais.pdf2025_dis_cssmorais.pdfapplication/pdf2215342http://repositorio.ufc.br/bitstream/riufc/82653/6/2025_dis_cssmorais.pdfbce7a3bcf74c30a49622d92f1966125aMD56riufc/826532025-09-22 15:08:10.674oai:repositorio.ufc.br:riufc/82653Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2025-09-22T18:08:10Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Restricting infections on graphs: immunization problems
dc.title.en.pt_BR.fl_str_mv Restricting infections on graphs: immunization problems
title Restricting infections on graphs: immunization problems
spellingShingle Restricting infections on graphs: immunization problems
Morais, Cícero Samuel Santos
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Algoritmo
Imunização
Complexidade parametrizada
Processos irreversíveis
Processos dinâmicos em grafos
Teoria dos grafos
Algorithm
Dynamical processes on graphs
Graph theory
Immunization
Irreversible processes
Parameterized complexity
title_short Restricting infections on graphs: immunization problems
title_full Restricting infections on graphs: immunization problems
title_fullStr Restricting infections on graphs: immunization problems
title_full_unstemmed Restricting infections on graphs: immunization problems
title_sort Restricting infections on graphs: immunization problems
author Morais, Cícero Samuel Santos
author_facet Morais, Cícero Samuel Santos
author_role author
dc.contributor.co-advisor.none.fl_str_mv Lima, Carlos Vinícius Gomes Costa
dc.contributor.author.fl_str_mv Morais, Cícero Samuel Santos
dc.contributor.advisor1.fl_str_mv Oliveira, Ana Karolinna Maia de
contributor_str_mv Oliveira, Ana Karolinna Maia de
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
topic CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Algoritmo
Imunização
Complexidade parametrizada
Processos irreversíveis
Processos dinâmicos em grafos
Teoria dos grafos
Algorithm
Dynamical processes on graphs
Graph theory
Immunization
Irreversible processes
Parameterized complexity
dc.subject.ptbr.pt_BR.fl_str_mv Algoritmo
Imunização
Complexidade parametrizada
Processos irreversíveis
Processos dinâmicos em grafos
Teoria dos grafos
dc.subject.en.pt_BR.fl_str_mv Algorithm
Dynamical processes on graphs
Graph theory
Immunization
Irreversible processes
Parameterized complexity
description Consider a graph G in which cv(τ) ∈ {0,1} denotes the state of the vertex v ∈ V(G) at a given time τ ∈ N. If cv(τ) = 0, we say that vertex v is inactive or uninfected at time τ; otherwise, we say that v is active or infected at time τ. A collection of states Cτ = (cv(τ))v∈V(G) is said to be a configuration of G at time τ. A sequence of configurations P = (Cτ)τ∈N of G is called a discrete dynamic process on G. Given a graph G, a function t : V(G) → N that assigns to each vertex v of G a value called the threshold of v, and a set S ⊆ V(G) of initially infected vertices, we say that P = It(G,S) is a t-irreversible process in G if P is a discrete dynamical process in G such that, for all v ∈V(G), we have that cv(0) = 1 if and only if v ∈ S and cv(τ +1) = 1 if and only if |{u ∈ NG(v) | cu(τ) = 1}| ≥ t(v). In other words, in a t-irreversible process P = It(G,S), we start with all the vertices of S infected at time τ = 0 and, at each successive time step, an uninfected vertex v becomes infected if it has at least its threshold t(v) of neighbors infected at the previous time step. Furthermore, once a vertex is infected, it remains infected. We say that the process ends when no more vertices can be infected. Irreversible processes are used to model various phenomena, including the spread of (dis-)information and contagious diseases. Irreversible t-processes are widely studied in the literature, mainly with the aim of finding a set of initially infected vertices that satisfies some criterion. This criterion is usually to maximize the number of infected vertices; or to minimize the time needed to infect all vertices; among other similar ones. In contexts of contagion and diffusion such as those mentioned above, however, it becomes natural to think about how to contain the infection, that is, to restrict the number of infected vertices at the end of the process to a small set. We do this through what we call vertex immunization. An immunized vertex cannot be infected and does not contribute to infecting other vertices. (CORDASCO et al., 2023) introduced the problem INFLUENCE IMMUNIZATION BOUNDING (IIB) in which, given a t-irreversible process P = It(G,S) and naturals k and `, the goal is to find a set Y ⊆ V(G) of vertices to be immunized such that |Y| ≤ ` and the number of infected vertices at the end of the process is at most k. We say that Y is a k-restricting set. In the same paper, the authors showed that the problem is W[1]-hard and W[2]-hard parameterized by some parameters, including k, `, the treewidth of the graph and the neighborhood diversity of the graph. They also showed some FPT algorithms parameterized by combinations of these parameters. In this work, we study IIB on several classes of graphs. For bipartite and split graphs, we show that the problem remains W[2]-hard parameterized by `. We also show that IIB is NP-complete even for subcubic bipartite planar graphs. For trees, we conjecture that the problem also remains NP-complete. For complete graphs where the thresholds of all vertices are equal, we show how to find a minimum k-restricting set. We also show some upper bounds for the size of a k-restricting set for paths, trees, planar and outerplanar graphs and other classes of graphs when k is large enough and the subgraph induced by S is connected.
publishDate 2025
dc.date.accessioned.fl_str_mv 2025-09-22T18:05:32Z
dc.date.available.fl_str_mv 2025-09-22T18:05:32Z
dc.date.issued.fl_str_mv 2025
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MORAIS, Cícero Samuel Santos. Restricting infections on graphs: immunization problems. 2025. 74 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2025.
dc.identifier.uri.fl_str_mv http://repositorio.ufc.br/handle/riufc/82653
identifier_str_mv MORAIS, Cícero Samuel Santos. Restricting infections on graphs: immunization problems. 2025. 74 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2025.
url http://repositorio.ufc.br/handle/riufc/82653
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/82653/4/license.txt
http://repositorio.ufc.br/bitstream/riufc/82653/5/2025_dis_cssmorais.pdf
http://repositorio.ufc.br/bitstream/riufc/82653/6/2025_dis_cssmorais.pdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bce7a3bcf74c30a49622d92f1966125a
bce7a3bcf74c30a49622d92f1966125a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793247628296192