Restricting infections on graphs: immunization problems
| Ano de defesa: | 2025 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Área do conhecimento CNPq: | |
| Link de acesso: | http://repositorio.ufc.br/handle/riufc/82653 |
Resumo: | Consider a graph G in which cv(τ) ∈ {0,1} denotes the state of the vertex v ∈ V(G) at a given time τ ∈ N. If cv(τ) = 0, we say that vertex v is inactive or uninfected at time τ; otherwise, we say that v is active or infected at time τ. A collection of states Cτ = (cv(τ))v∈V(G) is said to be a configuration of G at time τ. A sequence of configurations P = (Cτ)τ∈N of G is called a discrete dynamic process on G. Given a graph G, a function t : V(G) → N that assigns to each vertex v of G a value called the threshold of v, and a set S ⊆ V(G) of initially infected vertices, we say that P = It(G,S) is a t-irreversible process in G if P is a discrete dynamical process in G such that, for all v ∈V(G), we have that cv(0) = 1 if and only if v ∈ S and cv(τ +1) = 1 if and only if |{u ∈ NG(v) | cu(τ) = 1}| ≥ t(v). In other words, in a t-irreversible process P = It(G,S), we start with all the vertices of S infected at time τ = 0 and, at each successive time step, an uninfected vertex v becomes infected if it has at least its threshold t(v) of neighbors infected at the previous time step. Furthermore, once a vertex is infected, it remains infected. We say that the process ends when no more vertices can be infected. Irreversible processes are used to model various phenomena, including the spread of (dis-)information and contagious diseases. Irreversible t-processes are widely studied in the literature, mainly with the aim of finding a set of initially infected vertices that satisfies some criterion. This criterion is usually to maximize the number of infected vertices; or to minimize the time needed to infect all vertices; among other similar ones. In contexts of contagion and diffusion such as those mentioned above, however, it becomes natural to think about how to contain the infection, that is, to restrict the number of infected vertices at the end of the process to a small set. We do this through what we call vertex immunization. An immunized vertex cannot be infected and does not contribute to infecting other vertices. (CORDASCO et al., 2023) introduced the problem INFLUENCE IMMUNIZATION BOUNDING (IIB) in which, given a t-irreversible process P = It(G,S) and naturals k and `, the goal is to find a set Y ⊆ V(G) of vertices to be immunized such that |Y| ≤ ` and the number of infected vertices at the end of the process is at most k. We say that Y is a k-restricting set. In the same paper, the authors showed that the problem is W[1]-hard and W[2]-hard parameterized by some parameters, including k, `, the treewidth of the graph and the neighborhood diversity of the graph. They also showed some FPT algorithms parameterized by combinations of these parameters. In this work, we study IIB on several classes of graphs. For bipartite and split graphs, we show that the problem remains W[2]-hard parameterized by `. We also show that IIB is NP-complete even for subcubic bipartite planar graphs. For trees, we conjecture that the problem also remains NP-complete. For complete graphs where the thresholds of all vertices are equal, we show how to find a minimum k-restricting set. We also show some upper bounds for the size of a k-restricting set for paths, trees, planar and outerplanar graphs and other classes of graphs when k is large enough and the subgraph induced by S is connected. |
| id |
UFC-7_0790b62db1115fa330c04ab1bbbc6a46 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/82653 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Morais, Cícero Samuel SantosLima, Carlos Vinícius Gomes CostaOliveira, Ana Karolinna Maia de2025-09-22T18:05:32Z2025-09-22T18:05:32Z2025MORAIS, Cícero Samuel Santos. Restricting infections on graphs: immunization problems. 2025. 74 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2025.http://repositorio.ufc.br/handle/riufc/82653Consider a graph G in which cv(τ) ∈ {0,1} denotes the state of the vertex v ∈ V(G) at a given time τ ∈ N. If cv(τ) = 0, we say that vertex v is inactive or uninfected at time τ; otherwise, we say that v is active or infected at time τ. A collection of states Cτ = (cv(τ))v∈V(G) is said to be a configuration of G at time τ. A sequence of configurations P = (Cτ)τ∈N of G is called a discrete dynamic process on G. Given a graph G, a function t : V(G) → N that assigns to each vertex v of G a value called the threshold of v, and a set S ⊆ V(G) of initially infected vertices, we say that P = It(G,S) is a t-irreversible process in G if P is a discrete dynamical process in G such that, for all v ∈V(G), we have that cv(0) = 1 if and only if v ∈ S and cv(τ +1) = 1 if and only if |{u ∈ NG(v) | cu(τ) = 1}| ≥ t(v). In other words, in a t-irreversible process P = It(G,S), we start with all the vertices of S infected at time τ = 0 and, at each successive time step, an uninfected vertex v becomes infected if it has at least its threshold t(v) of neighbors infected at the previous time step. Furthermore, once a vertex is infected, it remains infected. We say that the process ends when no more vertices can be infected. Irreversible processes are used to model various phenomena, including the spread of (dis-)information and contagious diseases. Irreversible t-processes are widely studied in the literature, mainly with the aim of finding a set of initially infected vertices that satisfies some criterion. This criterion is usually to maximize the number of infected vertices; or to minimize the time needed to infect all vertices; among other similar ones. In contexts of contagion and diffusion such as those mentioned above, however, it becomes natural to think about how to contain the infection, that is, to restrict the number of infected vertices at the end of the process to a small set. We do this through what we call vertex immunization. An immunized vertex cannot be infected and does not contribute to infecting other vertices. (CORDASCO et al., 2023) introduced the problem INFLUENCE IMMUNIZATION BOUNDING (IIB) in which, given a t-irreversible process P = It(G,S) and naturals k and `, the goal is to find a set Y ⊆ V(G) of vertices to be immunized such that |Y| ≤ ` and the number of infected vertices at the end of the process is at most k. We say that Y is a k-restricting set. In the same paper, the authors showed that the problem is W[1]-hard and W[2]-hard parameterized by some parameters, including k, `, the treewidth of the graph and the neighborhood diversity of the graph. They also showed some FPT algorithms parameterized by combinations of these parameters. In this work, we study IIB on several classes of graphs. For bipartite and split graphs, we show that the problem remains W[2]-hard parameterized by `. We also show that IIB is NP-complete even for subcubic bipartite planar graphs. For trees, we conjecture that the problem also remains NP-complete. For complete graphs where the thresholds of all vertices are equal, we show how to find a minimum k-restricting set. We also show some upper bounds for the size of a k-restricting set for paths, trees, planar and outerplanar graphs and other classes of graphs when k is large enough and the subgraph induced by S is connected.Considere um grafo G em que cv(τ) ∈ {0,1} denota o estado do vértice v ∈ V(G) em um dado tempo τ ∈ N. Se cv(τ) = 0, dizemos que o vértice v está inativo ou não-infectado no tempo τ; caso contrário, dizemos que v está ativo ou infectado no tempo τ. Uma coleção de estados Cτ = (cv(τ))v∈V(G) é dita uma configuração de G no tempo τ. Uma sequência de configurações P = (Cτ)τ∈N de G é chamada de um processo dinâmico discreto em G. Dados um grafo G, uma função t : V(G) → N que atribui a cada vértice v de G um valor chamado de limiar de v, e um conjunto S ⊆ V(G) de vértices inicialmente infectados, dizemos que P = It(G,S) é um processo t-irreversível em G se P é um processo dinâmico discreto em G tal que, para todo v ∈ V(G), temos que cv(0) = 1 se e somente se v ∈ S e cv(τ + 1) = 1 se e somente se |{u ∈ NG(v) | cu(τ) = 1}| ≥ t(v). Ou seja, em um processo t-irreversível P = It(G,S), iniciamos com todos os vértices de S infectados no tempo τ = 0 e, a cada passo de tempo sucessivo, um vértice não-infectado v torna-se infectado se tiver pelo menos seu limiar t(v) de vizinhos infectados no passo de tempo anterior. Além disso, uma vez que um vértice é infectado, ele permanece infectado. Dizemos que o processo termina quando mais nenhum vértice pode ser infectado. Processos irreversíveis são utilizados para modelar diversos fenômenos, entre eles: difusão de (des-)informações e doenças contagiosas. Processos t-irreversíveis são bastante estudados na literatura principalmente com o objetivo de encontrar um conjunto de vértices inicialmente infectados que satisfaça algum critério. Este critério geralmente é maximizar o número de vértices infectados; ou minimizar o tempo necessário para infectar todos os vértices; entre outros similares. Porém, em contextos de contágio e difusão como os citados acima, torna-se natural pensar em como conter a infecção, ou seja, restringir o número de vértices infectados no fim do processo a um conjunto pequeno. Fazemos isto através do que chamamos de imunização de vértices. Um vértice imunizado não pode ser infectado e não contribui para infectar outros vértices. (CORDASCO et al., 2023) introduziu o problema INFLUENCE IMMUNIZATION BOUNDING (IIB) em que, dado um processo t-irreversível P = It(G,S) e naturais k e `, o objetivo é encontrar um conjunto Y ⊆ V(G) de vértices a serem imunizados tal que |Y| ≤ ` e o número de vértices infectados ao fim do processo é no máximo k. Dizemos que Y é um conjunto k-restritor. No mesmo artigo, os autores mostraram que o problema é W[1]-difícil e W[2]-difícil parametrizado por alguns parâmetros, entre eles k, `, a largura em árvore do grafo e a diversidade de vizinhança do grafo. Eles também mostraram alguns algoritmos FPT parametrizados por combinações destes parâmetros. Neste trabalho, nós estudamos IIB em diversas classes de grafos. Para grafos bipartidos e split, nós mostramos que o problema continua W[2]-difícil parametrizado por `. Mostramos também que IIB é NP-completo mesmo em grafos planares bipartidos subcúbicos. Para árvores, conjecturamos que o problema também permanece NP-completo. Para grafos completos em que os limiares de todos os vértices são iguais, mostramos como encontrar um conjunto k-restritor mínimo. Mostramos também alguns limitantes superiores para o tamanho de um conjunto k-restritor de caminhos, árvores, grafos planares e exoplanares e outras classes de grafos quando k é suficientemente grande e o subgrafo induzido por S é conexo.Restricting infections on graphs: immunization problemsRestricting infections on graphs: immunization problemsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisAlgoritmoImunizaçãoComplexidade parametrizadaProcessos irreversíveisProcessos dinâmicos em grafosTeoria dos grafosAlgorithmDynamical processes on graphsGraph theoryImmunizationIrreversible processesParameterized complexityCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOinfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFChttp://lattes.cnpq.br/3942868279619594http://lattes.cnpq.br/3309825374177429https://orcid.org/0000-0002-6666-0533http://lattes.cnpq.br/92451221657724012025-09-22LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/82653/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD54ORIGINAL2025_dis_cssmorais.pdf2025_dis_cssmorais.pdfapplication/pdf2215342http://repositorio.ufc.br/bitstream/riufc/82653/5/2025_dis_cssmorais.pdfbce7a3bcf74c30a49622d92f1966125aMD552025_dis_cssmorais.pdf2025_dis_cssmorais.pdfapplication/pdf2215342http://repositorio.ufc.br/bitstream/riufc/82653/6/2025_dis_cssmorais.pdfbce7a3bcf74c30a49622d92f1966125aMD56riufc/826532025-09-22 15:08:10.674oai:repositorio.ufc.br:riufc/82653Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2025-09-22T18:08:10Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
Restricting infections on graphs: immunization problems |
| dc.title.en.pt_BR.fl_str_mv |
Restricting infections on graphs: immunization problems |
| title |
Restricting infections on graphs: immunization problems |
| spellingShingle |
Restricting infections on graphs: immunization problems Morais, Cícero Samuel Santos CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO Algoritmo Imunização Complexidade parametrizada Processos irreversíveis Processos dinâmicos em grafos Teoria dos grafos Algorithm Dynamical processes on graphs Graph theory Immunization Irreversible processes Parameterized complexity |
| title_short |
Restricting infections on graphs: immunization problems |
| title_full |
Restricting infections on graphs: immunization problems |
| title_fullStr |
Restricting infections on graphs: immunization problems |
| title_full_unstemmed |
Restricting infections on graphs: immunization problems |
| title_sort |
Restricting infections on graphs: immunization problems |
| author |
Morais, Cícero Samuel Santos |
| author_facet |
Morais, Cícero Samuel Santos |
| author_role |
author |
| dc.contributor.co-advisor.none.fl_str_mv |
Lima, Carlos Vinícius Gomes Costa |
| dc.contributor.author.fl_str_mv |
Morais, Cícero Samuel Santos |
| dc.contributor.advisor1.fl_str_mv |
Oliveira, Ana Karolinna Maia de |
| contributor_str_mv |
Oliveira, Ana Karolinna Maia de |
| dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| topic |
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO Algoritmo Imunização Complexidade parametrizada Processos irreversíveis Processos dinâmicos em grafos Teoria dos grafos Algorithm Dynamical processes on graphs Graph theory Immunization Irreversible processes Parameterized complexity |
| dc.subject.ptbr.pt_BR.fl_str_mv |
Algoritmo Imunização Complexidade parametrizada Processos irreversíveis Processos dinâmicos em grafos Teoria dos grafos |
| dc.subject.en.pt_BR.fl_str_mv |
Algorithm Dynamical processes on graphs Graph theory Immunization Irreversible processes Parameterized complexity |
| description |
Consider a graph G in which cv(τ) ∈ {0,1} denotes the state of the vertex v ∈ V(G) at a given time τ ∈ N. If cv(τ) = 0, we say that vertex v is inactive or uninfected at time τ; otherwise, we say that v is active or infected at time τ. A collection of states Cτ = (cv(τ))v∈V(G) is said to be a configuration of G at time τ. A sequence of configurations P = (Cτ)τ∈N of G is called a discrete dynamic process on G. Given a graph G, a function t : V(G) → N that assigns to each vertex v of G a value called the threshold of v, and a set S ⊆ V(G) of initially infected vertices, we say that P = It(G,S) is a t-irreversible process in G if P is a discrete dynamical process in G such that, for all v ∈V(G), we have that cv(0) = 1 if and only if v ∈ S and cv(τ +1) = 1 if and only if |{u ∈ NG(v) | cu(τ) = 1}| ≥ t(v). In other words, in a t-irreversible process P = It(G,S), we start with all the vertices of S infected at time τ = 0 and, at each successive time step, an uninfected vertex v becomes infected if it has at least its threshold t(v) of neighbors infected at the previous time step. Furthermore, once a vertex is infected, it remains infected. We say that the process ends when no more vertices can be infected. Irreversible processes are used to model various phenomena, including the spread of (dis-)information and contagious diseases. Irreversible t-processes are widely studied in the literature, mainly with the aim of finding a set of initially infected vertices that satisfies some criterion. This criterion is usually to maximize the number of infected vertices; or to minimize the time needed to infect all vertices; among other similar ones. In contexts of contagion and diffusion such as those mentioned above, however, it becomes natural to think about how to contain the infection, that is, to restrict the number of infected vertices at the end of the process to a small set. We do this through what we call vertex immunization. An immunized vertex cannot be infected and does not contribute to infecting other vertices. (CORDASCO et al., 2023) introduced the problem INFLUENCE IMMUNIZATION BOUNDING (IIB) in which, given a t-irreversible process P = It(G,S) and naturals k and `, the goal is to find a set Y ⊆ V(G) of vertices to be immunized such that |Y| ≤ ` and the number of infected vertices at the end of the process is at most k. We say that Y is a k-restricting set. In the same paper, the authors showed that the problem is W[1]-hard and W[2]-hard parameterized by some parameters, including k, `, the treewidth of the graph and the neighborhood diversity of the graph. They also showed some FPT algorithms parameterized by combinations of these parameters. In this work, we study IIB on several classes of graphs. For bipartite and split graphs, we show that the problem remains W[2]-hard parameterized by `. We also show that IIB is NP-complete even for subcubic bipartite planar graphs. For trees, we conjecture that the problem also remains NP-complete. For complete graphs where the thresholds of all vertices are equal, we show how to find a minimum k-restricting set. We also show some upper bounds for the size of a k-restricting set for paths, trees, planar and outerplanar graphs and other classes of graphs when k is large enough and the subgraph induced by S is connected. |
| publishDate |
2025 |
| dc.date.accessioned.fl_str_mv |
2025-09-22T18:05:32Z |
| dc.date.available.fl_str_mv |
2025-09-22T18:05:32Z |
| dc.date.issued.fl_str_mv |
2025 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
MORAIS, Cícero Samuel Santos. Restricting infections on graphs: immunization problems. 2025. 74 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2025. |
| dc.identifier.uri.fl_str_mv |
http://repositorio.ufc.br/handle/riufc/82653 |
| identifier_str_mv |
MORAIS, Cícero Samuel Santos. Restricting infections on graphs: immunization problems. 2025. 74 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2025. |
| url |
http://repositorio.ufc.br/handle/riufc/82653 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/82653/4/license.txt http://repositorio.ufc.br/bitstream/riufc/82653/5/2025_dis_cssmorais.pdf http://repositorio.ufc.br/bitstream/riufc/82653/6/2025_dis_cssmorais.pdf |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 bce7a3bcf74c30a49622d92f1966125a bce7a3bcf74c30a49622d92f1966125a |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847793247628296192 |