Gradient-Based Steering for Vision-Based Crowd Simulation Algorithms
| Ano de defesa: | 2015 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.repositorio.ufc.br/handle/riufc/19859 |
Resumo: | Most recent crowd simulation algorithms equip agents with a synthetic vision component for steering. They offer promising perspectives by more realistically imitating the way humans navigate according to what they perceive of their environment. In this thesis, it is proposed a new perception/motion loop to steer agents along collision free trajectories that significantly improves the quality of vision-based crowd simulators. In contrast with previous solutions - which make agents avoid collisions in a purely reactive way - it is suggested exploring the full range of possible adaptations and to retain the locally optimal one. To this end, it is introduced a cost function, based on perceptual variables, which estimates an agent’s situation considering both the risks of future collision and a desired destination. It is then computed the partial derivatives of that function with respect to all possible motion adaptations. The agent adapts its motion to follow the steepest gradient. This thesis has thus two main contributions: the definition of a general purpose control scheme for steering synthetic vision-based agents; and the proposition of cost functions for evaluating the dangerousness of the current situation. Improvements are demonstrated in several cases. |
| id |
UFC-7_12926d69cae7467167a042d25d413bb1 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/19859 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Dutra, Teófilo BezerraCavalcante Neto, Joaquim Bento2016-09-28T22:54:58Z2016-09-28T22:54:58Z2015DUTRA, Teófilo Bezerra. Gradient-Based steering for vision-based crowd simulation algorithms. 2015. 122 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2015.http://www.repositorio.ufc.br/handle/riufc/19859Most recent crowd simulation algorithms equip agents with a synthetic vision component for steering. They offer promising perspectives by more realistically imitating the way humans navigate according to what they perceive of their environment. In this thesis, it is proposed a new perception/motion loop to steer agents along collision free trajectories that significantly improves the quality of vision-based crowd simulators. In contrast with previous solutions - which make agents avoid collisions in a purely reactive way - it is suggested exploring the full range of possible adaptations and to retain the locally optimal one. To this end, it is introduced a cost function, based on perceptual variables, which estimates an agent’s situation considering both the risks of future collision and a desired destination. It is then computed the partial derivatives of that function with respect to all possible motion adaptations. The agent adapts its motion to follow the steepest gradient. This thesis has thus two main contributions: the definition of a general purpose control scheme for steering synthetic vision-based agents; and the proposition of cost functions for evaluating the dangerousness of the current situation. Improvements are demonstrated in several cases.Alguns dos algoritmos mais recentes para simulação de multidão equipam agentes com um sistema visual sintético para auxiliá-los em sua locomoção. Eles oferecem perspectivas promissoras ao imitarem de forma mais realista a forma como os humanos navegam de acordo com o que eles percebem do seu ambiente. Nesta tese, é proposto um novo laço de percepção/ação para dirigir agentes ao longo de trajetórias livres de colisões que melhoram significativamente a qualidade dos simuladores de multidão baseados em visão. Em contraste com abordagens anteriores - que fazem agentes evitarem colisões de maneira puramente reativa - é sugerida a exploração de toda gama de adaptações possíveis e a retenção da que for ótima localmente. Para isto, é introduzida uma função de custo, baseada em variáveis de percepção, que estima a situação atual do agente considerando tanto os riscos de futuras colisões como o destino desejado. São então computadas as derivadas parciais dessa função com respeito a todas adaptações de movimento possíveis. O agente adapta seu movimento de forma a seguir o gradiente descendente. Esta tese possui assim duas principais contribuições: a definição de um esquema de controle de propósito geral para a orientação de agentes baseados em visão sintética; e a proposição de funções de custo para avaliar o perigo da situação atual. As melhorias obtidas com o modelo são demonstradas em diversos casos.Simulação de multidãoVisão sintéticaPrevenção de colisãoCrowd simulationSynthetic visionCollision avoidanceGradient-Based Steering for Vision-Based Crowd Simulation AlgorithmsGradient-Based Steering for Vision-Based Crowd Simulation Algorithmsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/19859/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINAL2015_tese_tfdutra.pdf2015_tese_tfdutra.pdfapplication/pdf18611468http://repositorio.ufc.br/bitstream/riufc/19859/1/2015_tese_tfdutra.pdfefc5f80ee6b8df68191af2bca394a07aMD51riufc/198592020-07-15 09:43:05.469oai:repositorio.ufc.br:riufc/19859Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2020-07-15T12:43:05Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
Gradient-Based Steering for Vision-Based Crowd Simulation Algorithms |
| dc.title.en.pt_BR.fl_str_mv |
Gradient-Based Steering for Vision-Based Crowd Simulation Algorithms |
| title |
Gradient-Based Steering for Vision-Based Crowd Simulation Algorithms |
| spellingShingle |
Gradient-Based Steering for Vision-Based Crowd Simulation Algorithms Dutra, Teófilo Bezerra Simulação de multidão Visão sintética Prevenção de colisão Crowd simulation Synthetic vision Collision avoidance |
| title_short |
Gradient-Based Steering for Vision-Based Crowd Simulation Algorithms |
| title_full |
Gradient-Based Steering for Vision-Based Crowd Simulation Algorithms |
| title_fullStr |
Gradient-Based Steering for Vision-Based Crowd Simulation Algorithms |
| title_full_unstemmed |
Gradient-Based Steering for Vision-Based Crowd Simulation Algorithms |
| title_sort |
Gradient-Based Steering for Vision-Based Crowd Simulation Algorithms |
| author |
Dutra, Teófilo Bezerra |
| author_facet |
Dutra, Teófilo Bezerra |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Dutra, Teófilo Bezerra |
| dc.contributor.advisor1.fl_str_mv |
Cavalcante Neto, Joaquim Bento |
| contributor_str_mv |
Cavalcante Neto, Joaquim Bento |
| dc.subject.por.fl_str_mv |
Simulação de multidão Visão sintética Prevenção de colisão Crowd simulation Synthetic vision Collision avoidance |
| topic |
Simulação de multidão Visão sintética Prevenção de colisão Crowd simulation Synthetic vision Collision avoidance |
| description |
Most recent crowd simulation algorithms equip agents with a synthetic vision component for steering. They offer promising perspectives by more realistically imitating the way humans navigate according to what they perceive of their environment. In this thesis, it is proposed a new perception/motion loop to steer agents along collision free trajectories that significantly improves the quality of vision-based crowd simulators. In contrast with previous solutions - which make agents avoid collisions in a purely reactive way - it is suggested exploring the full range of possible adaptations and to retain the locally optimal one. To this end, it is introduced a cost function, based on perceptual variables, which estimates an agent’s situation considering both the risks of future collision and a desired destination. It is then computed the partial derivatives of that function with respect to all possible motion adaptations. The agent adapts its motion to follow the steepest gradient. This thesis has thus two main contributions: the definition of a general purpose control scheme for steering synthetic vision-based agents; and the proposition of cost functions for evaluating the dangerousness of the current situation. Improvements are demonstrated in several cases. |
| publishDate |
2015 |
| dc.date.issued.fl_str_mv |
2015 |
| dc.date.accessioned.fl_str_mv |
2016-09-28T22:54:58Z |
| dc.date.available.fl_str_mv |
2016-09-28T22:54:58Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
DUTRA, Teófilo Bezerra. Gradient-Based steering for vision-based crowd simulation algorithms. 2015. 122 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2015. |
| dc.identifier.uri.fl_str_mv |
http://www.repositorio.ufc.br/handle/riufc/19859 |
| identifier_str_mv |
DUTRA, Teófilo Bezerra. Gradient-Based steering for vision-based crowd simulation algorithms. 2015. 122 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2015. |
| url |
http://www.repositorio.ufc.br/handle/riufc/19859 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/19859/2/license.txt http://repositorio.ufc.br/bitstream/riufc/19859/1/2015_tese_tfdutra.pdf |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 efc5f80ee6b8df68191af2bca394a07a |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847793370897842176 |